Advertisement

Bulletin of Mathematical Biology

, Volume 45, Issue 3, pp 409–424 | Cite as

On the fate of inhaled particles in the human: A comparison of experimental data with theoretical computations based on a symmetric and asymmetric lung

  • T. Martonen
Article

Abstract

An analytical model is used to described the behavior of inhaled particulate matter in the human respiratory tract. Three different geometries, symmetric and asymmetric, are utilized to simultate the tracheobronchial (TB) tree. The suitability of each geometry for representing the human is evaluated by comparing calculated aerosol deposition probabilities with experimental data from inhalation exposure tests. A symmetric, dichotomously branching pattern is found to be a reliable description of the TB tree for studies of factors affecting aerosol deposition in the human lung. Calculations with the theoretical model are in excellent agreement with measured aerosol deposition efficiencies. Furthermore, the model accurately predicts experimentally observed features of inhalation exposure data, such as effects of inter-subject lung morphology differences and relative efficiencies of specific deposition mechanisms, on aerosol deposition patterns in the TB tree.

Keywords

Aerosol Deposition Aerosol Mass Inspiratory Flow Rate Human Respiratory Tract Inertial Impaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Chan, T. L., R. M. Schreck and M. Lippman 1980. “Effect of the Laryngeal Jet on Particle Deposition in the Human Trachea and Upper Bronchial Airways.”J. Aerosol Sci. 11, 447–459.CrossRefGoogle Scholar
  2. Dekker, E. 1961. “Transition Between Laminar and Turbulent Flow in Human Trachea.”J. appl. Physiol. 16, 1060–1064.Google Scholar
  3. Ferron, G. A. 1977. “Deposition of Polydisperse Aerosols in Two Glass Models Representing the Upper Human Airways.”J. Aerosol Sci. 8, 409–427.CrossRefGoogle Scholar
  4. Findeisen, W. 1935. “Über das Absetzen kleiner, in der Luft suspendieter Teilchen in der menschlichen Lunge bei der Atmung.”Pflügers Arch. ges. Physiol. 236, 367–379.CrossRefGoogle Scholar
  5. Foord, N., A. Black and M. Walsh. 1978. “Regional Deposition of 2.5–7.5 μm Diameter Inhaled Particles in Healthy Male Non-smokers.”J. Aerosol Sci. 9, 343–357.CrossRefGoogle Scholar
  6. Gerrity, T. R., P. S. Lee, F. J. Hass, A. Marinelli, P. Werner and R. V. Lourenco. 1979. “Calculated Deposition of Inhaled Particles in the Airway Generations of Normal Subjects”J. appl. Physiol. 47, 867–874.Google Scholar
  7. Heyder, J. and G. Rudolf. 1977. “Deposition of Aerosol Particles in the Human Nose.” InInhaled Particles IV, Ed. W. H. Walton, pp. 107–126. Oxford: Pergamon Press.Google Scholar
  8. Horsfield, K. and G. Cumming. 1967. “Angles of Branching and Diameters of Branches in the Human Bronchial Tree.”Bull. math. Biophys. 29, 245–259.Google Scholar
  9. —, G. Dart, D. E. Olson, G. F. Filley and G. Cumming. 1971. “Models of the Human Bronchial Tree.”J. appl. Physiol. 31, 207–217.Google Scholar
  10. Hughes, J. M., F. G. Hoppin, Jr. and J. Mead. 1972. “Effect of Lung Inflation on Bronchial Length and Diameter in Excised Lungs.”J. appl. Physiol. 32, 25–35.Google Scholar
  11. Landahl, H. D. 1950. “On the Removal of Airborne Droplets by the Human Respiratory Tract: I. The Lung.”Bull. math. Biophys. 12, 43–56.MathSciNetGoogle Scholar
  12. Lippmann, M. and R. E. Albert. 1969. “The Effect of Particle Size on the Regional Distribution of Inhaled Aerosols in the Human Respiratory Tract.”Am. Ind. Hyg. Ass. J. 30, 257–275.Google Scholar
  13. Lippmann, M., R. E. Albert and H. T. Peterson. 1971. “The Regional Deposition of Inhaled Aerosolsin Man.” InInhaled Particles III, Ed. W. H. Walton, pp. 105–122. The Gresham Press, England: Unwin Bros.Google Scholar
  14. Martonen, T. B. 1982. “Analytical Model of Hygroscopic Particle Behavior in Human Airways.”Bull. math. Biol. 44, 425–442.MATHGoogle Scholar
  15. — and D. Gibby, 1982. “Computer Models of Aerosol Deposition in Two Human Tracheobronchial Geometries.”Comput. Biomed. Res. 15, 425–433.CrossRefGoogle Scholar
  16. Martonen, T. B. and J. Lowe. In press. “Assessment of Aerosol Deposition Paterns in Human Respiratory Tract Cases.” InProceedings of the International Symposium on Aerosols in the Mining and Industrial Work Environment. Ann Arbor: Ann Arbor Science Publishers.Google Scholar
  17. — and M. Patel. 1981. “Modeling the Dose Distribution of H2SO4 Aerosols in the Human Tracheobronchial Tree.”Am. Ind. Hyg. Ass. J. 42, 435–460.Google Scholar
  18. Pattle, R. E. 1961. “The Retention of Gases and Particles in the Human Nose.” InInhaled Particles and Vapours, Ed. C. N. Davies, pp. 302–309. Oxford: Pergamon Press.Google Scholar
  19. Raabe, O. G., H. C. Yeh, G. M. Schum and R. F. Phalen. 1976. “Tracheobronchial Geometry: Human, Dog, Rat, Hamster.” LF-53, Lovelace Foundation for Medical Education and Research. NTIS. Springfield, VA.Google Scholar
  20. Scherer, P. W., F. R. Haselton, L. M. Hanna and D. R. Stone. 1979. “Growth of Hygroscopic Aerosols in a Model of Bronchial Airways.”J. appl. Physiol. 47, 544–550.Google Scholar
  21. Schlesinger, R. B. and M. Lippmann. 1976. “Particle Deposition in the Trachea:in Vivo and in Hollow Casts.”Thorax 31, 678–684.CrossRefGoogle Scholar
  22. Schlesinger, R. B., D. E. Bohning, T. L. Chan and M. Lippmann. 1977. “Particle Deposition in a Hollow Cast of the Human Tracheobronchial Tree.”J. Aerosol Sci. 8, 429–445.CrossRefGoogle Scholar
  23. Schroter, R. L. and M. F. Sudlow. 1969. “Flow Patterns in Models of the Human Bronchial Airways.”Respir. Physiol. 7, 341–355.CrossRefGoogle Scholar
  24. Soong, T. T., P. Nicholaides, C. P. Yu and S. C. Soong. 1979. “A Statistical Description of the Human Tracheobronchial Tree Geometry.”Respir. Physiol. 37, 161–172.CrossRefGoogle Scholar
  25. Task Group on Lung Dynamics. 1966. “Deposition and Retention Models for Internal Dosimetry of the Human Respiratory Tract.”Health Phys. 12, 173–208.Google Scholar
  26. Weibel, E. 1963.Morphometry of the Human Lung. Berlin: Springer-Verlag.Google Scholar
  27. West, J. B. and P. Hung-Jones. 1959. “Patterns of Gas Flow in the Upper Bronchial Tree.”J. appl. Physiol. 14, 753–759.Google Scholar
  28. Widdecombe, J. G. 1954. “Receptors in the Trachea and Bronchi of the Cat.”J. Physiol. 123, 71–104.Google Scholar

Copyright information

© Society for Mathematical Biology 1983

Authors and Affiliations

  • T. Martonen
    • 1
  1. 1.Inhalation Technology and Toxicology Section, BattelePacific Northwest LaboratoriesRichlandU.S.A.

Personalised recommendations