Advertisement

Scientometrics

, Volume 40, Issue 3, pp 507–528 | Cite as

Growth of research literature in scientific specialities. A modelling perspective

  • B. M. Gupta
  • Praveen Sharma
  • C. R. Karisiddappa
Article

Abstract

The paper discusses the application of three well known diffusion models and their modified versions to the growth of publication data in four selected fields of S&T. It is observed that all the three models in their modified versions generally improve their performance in terms of parameter values, fit statistics, and graphical fit to the data. The most appropriate model is generally seen to be the modified exponential-logistic model.

Keywords

Diffusion Model Research Output Innovation Diffusion Subject Field Potential Adopter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gilbert, G. N. (1978), Measuring the growth of science: A review of indices,Scientometrics, 1(1):9–34.CrossRefGoogle Scholar
  2. 2.
    Solla Price, D. J. de. (1961),Science Since Babylon, New Haven, Connecticut; Yale University Press.Google Scholar
  3. 3.
    Solla Price, D. J. de (1963),Little Science, Big Science, New York; Columbia University Press.Google Scholar
  4. 4.
    Rogers, E. M. (1962),Diffusion of Innovations, New York; Free Press of Glencoe.Google Scholar
  5. 5.
    Valente, T. W. (1995),Network Models of the Diffusion of Innovations. NJ; Hampton Press, Inc.Google Scholar
  6. 6.
    Rogers, e. M.,Shoemaker, F. F. (1971),Communication of Innovations: A Cross Cultural Approach, New York; The Free Press.Google Scholar
  7. 7.
    Alber, R., Adams, J. S., Gould, P. (1971),Spatial Organisation, Englewood Cliffs, N J: Prentice Hall.Google Scholar
  8. 8.
    Kumar, V., Kumar, U. (1992), Innovation diffusion: some new technology substitution models,Journal of Mathematical Sociology, 17(2–3): 175–194.MATHCrossRefGoogle Scholar
  9. 9.
    Mansfield, E. (1961), Teehnical change and the rate of immitation,Econometrica, 29:741–766.MATHCrossRefGoogle Scholar
  10. 10.
    Griliches, Z. (1957), Hyorid corn: An exploration in the economics of technological change,Econometrica, 25: 501–522.CrossRefGoogle Scholar
  11. 11.
    Robinson, B., Lakhani, C. (1975), Dynamic Price models for new product planning,Management Science, 21:1113–1122.Google Scholar
  12. 12.
    Brown, L. A. (1981),Innovation Diffusion: A New Perspective, New York; Methuen.Google Scholar
  13. 13.
    Casetti, E., Sample, R. K. (1969), Concerning and testing of spatial diffusion hypothesis,Geographical Analysis, 1:254–259.CrossRefGoogle Scholar
  14. 14.
    Sahal, D. (1981),Patterns of Technological Innovations, Rading, MA; Addison-Wesley.Google Scholar
  15. 15.
    Sahal, D. (1983), Invontion, innovation and economic evaluation,Technological Forecasting and Social Change, 23:213–235.CrossRefGoogle Scholar
  16. 16.
    Karmeshu;Bhargava, S. C., Jain, V. P. (1985),Urban Economics, 15:137–141.CrossRefGoogle Scholar
  17. 17.
    Blackman, A. W. Jr. (1971), The rate of innovation in the commercial aircraft jet engine market,Technological Forecasting and Social Change, 2:3–4.Google Scholar
  18. 18.
    Blackman, A. W. Jr. (1972), A mathematical model for trend forecast,Technological Forecasting and Social Change, 3: 441–452.CrossRefGoogle Scholar
  19. 19.
    Nevers, J. V. (1972), Extensions of a new product growth model,Sloan Management Review, 13: 78–79.Google Scholar
  20. 20.
    Easingwood, C. J., Mahajan, V., Muller, E. A. (1981), Non-symmetric responding logistic model for technological substitution,Technological Forecasting and Social Change, 20:199–213.CrossRefGoogle Scholar
  21. 21.
    Teotia, A. P. S., Raju, P. S. (1986), Forecasting the market penetration of new technologies using a combination of economic cost and diffusion models,Journal of Product Innovation Management, 3: 225–237.CrossRefGoogle Scholar
  22. 22.
    Bewley, R., Fiebig, D. G. (1986), A flexible logistic growth model with applications in telecommunications,International Journal of Forecasting, 3: 225–237.Google Scholar
  23. 23.
    McGowan, I. (1986), The use of growth curves in forecasting market developments,Journal of Forecasting, 5(1): 69–71.Google Scholar
  24. 24.
    Hamblin, R. L;Jacobsin, R. B., Miller, J. L. L. (1973),A Mathematical Theory of Social Change, New York; John Wiley.Google Scholar
  25. 25.
    Mahajan, V., Peterson, R. A. (1985),Models for Innovation Diffusion, Beverly Hill; Sage Publications, p. 10.MATHGoogle Scholar
  26. 26.
    Mahajan, V., Scholeman, M. E. F. (1977), Generalized model for the time pattern of the diffusion process,IEEE Transactions on Engineering Management, EM 24(1):12–18.CrossRefGoogle Scholar
  27. 27.
    Bass, F. M. (1969), A new product growth model for consumer durables,Management Science, 15: 215–227.CrossRefGoogle Scholar
  28. 28.
    Sharma, L., Basu, A., Bhargava, S. C. (1993), A new model of innovation diffusion,Journal of Scientific and Industrial Research, 52 (3): 151–158.Google Scholar
  29. 29.
    Sharma, P., Bhargava, S. C. (1994), A non-homogenous non-uniform influence model of innovation diffusion,Technological Forecasting and Social Change, 46:279–288.CrossRefGoogle Scholar
  30. 30.
    Sharma, P., Bhargava, S. C. (1996), Study on diffusion pattern and forecast of Indian electronic consumer durables,Journal of Scientific and Industrial Research, 55(7):483–489.Google Scholar
  31. 31.
    Sterman, J. D., (1985), The growth of knowledge: Testing a theory of scientific revolution with a formal model,Technological Forecasting and Social Change, 28: 93.CrossRefGoogle Scholar
  32. 32.
    Jain, A., Garg, K. C. (1992), Laser research in India: Scientometric study and model projections,Scientometrics, 23: 395–415.CrossRefGoogle Scholar
  33. 33.
    Garg, K. C., Sharma, P., Sharma, L. (1993), Bradford's law in relation to the evolution of a field: A case study of solar power research,Scientometrics, 27:145–156.CrossRefGoogle Scholar
  34. 34.
    Gupta, B. M., Sharma, L., Karisiddappa, C. R. (1995), Modelling the growth of papers in a scientific speciality,Scientometrics, 33:187–201.CrossRefGoogle Scholar
  35. 35.
    Falsenteen, J. (1981),Bibliography of Theoretical Population Genetics, Pennsylvania; Dowden, Hutshinson & Ross, Inc.Google Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • B. M. Gupta
    • 1
  • Praveen Sharma
    • 1
  • C. R. Karisiddappa
    • 2
  1. 1.Scientometrics and Informetrics GroupNational Institute of Science, Technology and Development StudiesNew Delhi(India)
  2. 2.Department of Library & Information ScienceKarnataka UniversityDharwad(India)

Personalised recommendations