Skip to main content
Log in

The trade-off between mutual interference and time lags in predator-prey systems

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a Gause predator-prey model incorporating mutual interference among predators, a density-dependent predator death rate and a time lag due to gestation. It is well known that mutual interference is stabilizing, whereas time delays are destabilizing. We show that in combining the two, a long time-lag usually, but not always, destabilizes the system. We also show that increasing delays can cause a bifurcation into periodic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, V. D., D. L. De Angelis and R. A. Goldstein. 1980. “Stability Analysis of the Time Delay in a Host-Parasitoid Model.”J. theor. Biol. 83, 43–62.

    Article  Google Scholar 

  • Arditi, R., J.-M. Abillon and J. Vieira da Silva. 1977. “The Effect of a Time-delay in a Predator-Prey Model.”Math. Biosci. 33, 107–120.

    Article  MATH  Google Scholar 

  • Bellman, R. and K. L. Cooke. 1963.Differential-difference Equations. New York: Academic Press.

    Google Scholar 

  • Bounds, J. M. and J. M. Cushing. 1975. “On the Behavior of Solutions of Predator-Prey Equations with Hereditary Terms.”Math. Biosci. 26, 41–54.

    Article  MathSciNet  Google Scholar 

  • Brauer, F. 1977. “Periodic Solutions of Some Ecological Models.”J. theor. Biol. 69, 143–152.

    Article  MathSciNet  Google Scholar 

  • —, 1979. “Characteristic Return Times for Harvested Population Models with Time Lag.”Math. Biosci. 45, 295–311.

    Article  MATH  MathSciNet  Google Scholar 

  • Cooke, K. L. and J. A. Yorke, 1973. “Some Equations Modelling Growth Processes and Gonorrhea Epidemics.”Math. Biosci. 16, 75–101.

    Article  MATH  MathSciNet  Google Scholar 

  • Cushing, J. M. 1976a. “Forced Asymptotically Periodic Solutions of Predator-Prey Systems with or without Hereditary Effects.”SIAM J. appl. Math.,30, 665–674.

    Article  MATH  MathSciNet  Google Scholar 

  • —. 1976b. “Periodic Solutions of Two Species Interaction Models with Lags.”Math. Biosci. 31, 143–156.

    Article  MATH  MathSciNet  Google Scholar 

  • —. 1976c. “Predator-Prey Interaction with Time Delays.”J. math. Biol. 3, 369–380.

    MATH  MathSciNet  Google Scholar 

  • Freedman, H. I. 1969. “The Implicit Function Theorem in the Scalar Case.”Can. math. Bull. 12, 721–732.

    MATH  Google Scholar 

  • —. 1979. “Stability Analysis of a Predator-Prey System with Mutual Interference and Density-dependent Death Rates.”Bull. math. Biol. 41, 67–78.

    Article  MATH  MathSciNet  Google Scholar 

  • —. 1980.Deterministic Mathematical Models in Population Ecology. New York: Marcel Dekker.

    Google Scholar 

  • Hale, J. 1977.Theory of Functional Differential Equations. New York: Springer Verlag.

    Google Scholar 

  • Hassell, M. P. 1971. “Mutual Interference between Searching Insect Parasites.”J. Anim. Ecol. 40, 473–486.

    Article  Google Scholar 

  • Levin, S. A. 1977. “A More Functional Response to Predator-Prey Stability.”Am. Nat. 111, 381–383.

    Article  Google Scholar 

  • — and R. M. May. 1976. “A Note on Difference-delay Equations.”Theor. pop. Biol. 9, 178–187.

    Article  MATH  MathSciNet  Google Scholar 

  • May, R. M. 1973. “Time-delay versus Stability in Population Models with Two and Three Trophic Levels.”Ecology 54, 315–325.

    Article  Google Scholar 

  • Reddingius, J. 1963. “A Mathematical Note on a Model of a Consumer-Food Relation in which the Food is Continually Replaced.”Acta biotheor. 16, 183–198.

    Article  Google Scholar 

  • Rogers, D. J. and M. P. Hassell. 1974. “General Models for Insect Parasite and Predator Searching Behaviour: Interference.”J. Anim. Ecol. 43, 239–253.

    Article  Google Scholar 

  • Rosenzweig, M. L. and R. H. MacArthur. 1963. “Graphical Representation and Stability Conditions of Predator-Prey Interactions.”Am. Nat. 47, 209–223.

    Article  Google Scholar 

  • Smith, R. H. and R. Mead. 1974. “Age Structure and Stability in Models of Prey-Predator Systems.”Theor. pop. Biol. 6, 308–322.

    Article  Google Scholar 

  • Taylor, C. E. and R. R. Sokal. 1976. “Oscillations in Housefly Population Sizes due to Time Lags.”Ecology 57, 1060–1067.

    Article  Google Scholar 

  • Thingstad, T. F. and T. I. Langeland. 1974. “Dynamics of Chemostat Culture: the Effect of a Delay in Cell Response.”J. theor. Biol. 48, 149–159.

    Article  Google Scholar 

  • Veilleux, B. G. 1979. “An Analysis of the Predatory Interaction betweenParamecium andDidinium.”J. Anim. Ecol. 48, 787–803.

    Article  Google Scholar 

  • Wangersky, P. J. and W. J. Cunningham. 1957. “Time Lag in Population Models.”Cold Spring Harb. Symp. qual. Biol. 22, 329–338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research for this paper was partly supported by the Natural Science and Engineering Council of Canada, grant No. NSERC A4823, and by a grant from the University Grants Commission, New Delhi, India, grant No. F. 23-1174/79 (S.R. II).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freedman, H.L., Sree Hari Rao, V. The trade-off between mutual interference and time lags in predator-prey systems. Bltn Mathcal Biology 45, 991–1004 (1983). https://doi.org/10.1007/BF02458826

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458826

Keywords

Navigation