Il Nuovo Cimento D

, Volume 16, Issue 8, pp 993–1025 | Cite as

Glass-forming liquids, anomalous liquids, and polyamorphism in liquids and biopolymers

  • C. A. Angell
  • P. H. Poole
  • J. Shao


Glass formation in nature and materials science is reviewed and the recent recognition of polymorphism within the glassy state, polyamorphism, is discussed. The process by which the glassy state originates during the continuous cooling or viscous slowdown process, is examined and the three canonical characteristics of relaxing liquids are correlated through the fragility. The conversion of strong liquids to fragile liquids by pressure-induced coordination number increases is discussed, and then it is shown that for the same type of system it is possible to have the same conversion accomplished via a first-order transition within the liquid state. The systems in which this can happen are of the same type which exhibit polyamorphism, and the whole phenomenology can be accounted for by a recent simple modification of the van der Waals model for tetrahedrally bonded liquids. The concept of complex amorphous systems which can lose a significant number of degrees of freedom through weak first-order transitions is then used to discuss the relation between native and denatured hydrated proteins, since the latter have much in common with plasticized chain polymer systems. Finally, we close the circle by taking a short-time-scale phenomenon given much attention by protein physicists,viz., the onset of an anomaly in the Debye-Waller factor with increasing temperature, and showing that for a wide variety of liquids, including computer-simulated strong and fragile ionic liquids, this phenomenon is closely correlated with the experimental glass transition temperature. This implies that the latter owes its origin to the onset of strong anharmonicity in certain components of the vibrational density of states (evidently related to the boson peak) which then permits the system to gain access to its configurational degrees of freedom. The more anharmonic these vibrational components, the closer to the Kauzmann temperature will commence the exploration of configuration space and, for a given configurational microstate degeneracy, the more fragile the liquid will be.

PACS 61.40

Amorphous materials glasses 

PACS 64.70.Ja

Liquid-liquid transitions 

PACS 64.70.Pf

Glass transitions 

PACS 87.15.He

Molecular dyanamics, conformational changes, and pattern recognition in biomolecules 

PACS 01.30.Cc

Conference proceedings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Wong andC. A. Angell:Glass: Structure by Spectroscopy (Marcel Dekker, New York, N.Y., 1976), Chapt. 1.Google Scholar
  2. [2]
    G. W. Scherer andP. C. Schultz: inGlass Science and Technology, Vol.1,Glassforming Systems, edited byD. R. Uhlmann andN. J. Kreidl (Academic Press, 1983), Chapt. 2.Google Scholar
  3. [3]
    C. A. Angell andM. Goldstein (Editors):Dynamics of Structural Change in Liquids and Glasses, Vol.484, (Ann. N.Y. Acad. Sci., New York, N.Y., 1986), papers referred to below.Google Scholar
  4. [4]a)
    R. Schwarz andW. L. Johnson:Phys. Rev. Lett.,51, 415 (1983);b)W. L. Johnson: in ref. [3],C. A. Angell andM. Goldstein (Editors):Dynamics of Structural Change in Liquids and Glasses, Vol.484, (Ann. N.Y. Acad. Sci., New York, N.Y., 1986), p. 13 (1986).ADSCrossRefGoogle Scholar
  5. [5]
    Brinker (Editor):Mater. Res. Soc. Symp. Proc.,32 (1984);73 (1986).Google Scholar
  6. [6]a)
    E. Whalley: in ref.—, p. 81;b)O. Mishima, L. D. Calvert andE. Whalley:Nature (London),310, 393 (1984);314, 76 (1985);O. Mishima, K. Takemure andK. Aoki:Science,254, 406 (1991);c)O. Mishima:J. Chem. Phys.,100, 5910 (1994).Google Scholar
  7. [7]
    G. H. Wolf, S. Wang, C. A. Herbst, D. J. Durben, W. J. Oliver, Z. C. Kang andC. Halvorsen: inHigh-Pressure Research: Application to Earth and Planetary Sciences, edited byY. S. Manghnani andM. H. Manghnani (Terra Scientific Publishing Co./Am. Geophysical Union, Tokyo/Washington, 1992), p. 503.Google Scholar
  8. [8]
    L.-G. Liu andA. E. Ringwood:Earth Planet. Sci. Lett.,28, 209 (1975).ADSCrossRefGoogle Scholar
  9. [9]
    E. G. Ponyatovsky andO. I. Barkalov:Mater. Sci. Rep.,8, 147 (1992).CrossRefGoogle Scholar
  10. [10]
    M. Hemmati, A. Chizmeshya, G. H. Wolf, P. H. Poole, J. Shao andC. A. Angell:Phys. Rev. B (in press).Google Scholar
  11. [11]a)
    P. H. Poole, F. Sciortino, U. Essmann andH. E. Stanley:Nature (London),360, 324 (1992) b)P. H. Poole, F. Sciortino, U. Essmann andH. E. Stanley:Phys. Rev. E,48, 3799, 4605 (1993).ADSCrossRefGoogle Scholar
  12. [12]a)
    B. Boulard, C. A. Angell, J. Kieffer andC. C. Phifer:J. Non-Cryst. Solids,140, 350 (1992); andB. Boulard: unpublished work.CrossRefADSGoogle Scholar
  13. [13]
    J. Shao: unpublished data on SiO2.Google Scholar
  14. [14]a)
    R. G. Palmer:Adv. Phys.,31, 669 (1984); b)R. J. Palmer andD. C. Stein: inRelaxations in Complex Systems, edited byK. Ngai andG. B. Wright (National Technical Information Service, U.S. Department of Commerce, Springfield, Va., 1985), p. 253.ADSCrossRefGoogle Scholar
  15. [15]
    J. H. Gibbs andE. A. Dimarzio:J. Chem. Phys.,28, 373 (1958).CrossRefADSGoogle Scholar
  16. [16]
    J. Jäckle:Rep. Prog. Phys.,49, 171 (1986).ADSCrossRefGoogle Scholar
  17. [17]
    C. A. Angell, C. Alba, A. Arzimanoglou, R. Böhmer, J. Fan, Q. Lu, E. Sanchez, H. Senapati andM. Tatsumisago:Am. Inst. Phys. Conf. Proc.,256, 3 (1992).ADSGoogle Scholar
  18. [18]a)
    U. Bengtzelius, W. Götze andA. Sjölander:J. Chem. Phys.,17, 5915 (1984); b)W. Götze: inLiquids, Freezing, and the Glass Transition, edited byJ. P. Hansen andD. Levesque,NATO-ASI Series (Plenum, New York-Les Houches, 1989); c)W. Götze andA. Sjögren:Rep. Prog. Phys.,55, 55 (1992).Google Scholar
  19. [19]
    W. T. Laughlin andD. R. Uhlmann:J. Phys. Chem.,76, 2317 (1972); c)W. Gotze andL. Sjögren:Rep. Prog. Phys.,55, 55 (1992).CrossRefGoogle Scholar
  20. [20]
    C. A. Angell: inRelaxations in Complex Systems, edited byK. Ngai andG. B. Wright (National Technical Information Service, U.S. Department of Commerce, Springfield, Va., 1985), p. 1.Google Scholar
  21. [21]
    C. A. Angell:J. Non-Cryst. Solids,131–133, 13 (1991).CrossRefGoogle Scholar
  22. [22]
    C. A. Angell, L. Monnerie andL. M. Torell:Symp. Mater. Res. Soc., edited byJ. M. O'Reilly, Vol. 215, p. 3 (1991).Google Scholar
  23. [23]
    H. Vogel:J. Phys. Z.,22, 645 (1921).Google Scholar
  24. [24]
    G. S. Fulcher:J. Am. Ceram. Soc.,8, 339 (1925).CrossRefGoogle Scholar
  25. [25]
    G. Tammann andW. Z. Hesse:Anorg. Allgem. Chem.,156, 245 (1926).CrossRefGoogle Scholar
  26. [26]
    G. W. Scherer:J. Am. Ceram. Soc.,75, 1060 (1992).CrossRefGoogle Scholar
  27. [27]
    C. A. Angell: submitted toMacromolecules.Google Scholar
  28. [28]
    A. A. Miller:Macromolecules,11, 859 (1978).CrossRefGoogle Scholar
  29. [29]
    J. D. Ferry:Viscoelastic Properties of Polymers, 3rd edition (Wiley, New York, N.Y., 1980).Google Scholar
  30. [30]
    D. J. Plazek andK. L. Ngai:Macromolecules,24, 1222 (1991).CrossRefGoogle Scholar
  31. [31]
    J. Souletie:J. Phys. (Paris),51, 883 (1990).Google Scholar
  32. [32]
    A. W. Kauzmann:Chem. Rev.,43, 219 (1948).CrossRefGoogle Scholar
  33. [33]
    A. J. Batchinski:Z. Phys. Chem.,84, 643 (1913).Google Scholar
  34. [34]
    E. A. Hildebrand, I. R. McKinnon andD. R. MacFarlane:J. Chem. Phys.,90, 2784 (1986).CrossRefGoogle Scholar
  35. [35]
    B. J. Alder, D. M. Gass andT. E. Wainwright:J. Chem. Phys.,53, 3813 (1970)CrossRefADSGoogle Scholar
  36. [36]
    R. J. Speedy andC. A. Angell:J. Chem. Phys.,65, 851 (1976).ADSCrossRefGoogle Scholar
  37. [37]
    W. Kob andH. C. Andersen:Phys. Rev. Lett.,73, 1376 (1984) andW. Kob: private communication.ADSCrossRefGoogle Scholar
  38. [38]
    H. Eyring:J. Chem. Phys.,4, 283 (1936).CrossRefADSGoogle Scholar
  39. [39]
    H. Bässler:Phys. Rev. Lett.,58, 767 (1987);R. Richert andH. Bässler:J. Phys. Condens. Matter. 2, 2273, (1990).ADSCrossRefGoogle Scholar
  40. [40]
    T. A. Litovitz:J. Chem. Phys.,20, 1088 (1952).CrossRefADSGoogle Scholar
  41. [41]
    R. Chamberlin: private communication (1994).Google Scholar
  42. [42]
    M. H. Cohen andD. Turnbull:J. Chem. Phys.,31, 1164 (1959).CrossRefADSGoogle Scholar
  43. [43]
    M. F. Shlesinger:Ann. Rev. Phys. Chem.,39, 269 (1988).CrossRefGoogle Scholar
  44. [44]
    J. T. Bendler andM. F. Schlesinger:J. Stat. Phys.,53, 531 (1988).CrossRefADSGoogle Scholar
  45. [45]a)
    R. Hall andP. G. Wolynes:J. Chem. Phys.,86, 2943 (1987); b)P. G. Wolynes:Phys. Rev. A,40, 1045 (1989).ADSCrossRefGoogle Scholar
  46. [46]
    G. Adam andJ. H. Gibbs:J. Chem. Phys.,43, 139 (1965).CrossRefADSGoogle Scholar
  47. [47]
    C. A. Angell, L. Boehm, M. Oguni andD. L. Smith:J. Mol. Liq.,56, 275 (1993).CrossRefGoogle Scholar
  48. [48]
    E. Tombari, G. Chryssikos, B. Gestblom andR. H. Cole:J. Mol. Liq.,43, 53 (1989).CrossRefGoogle Scholar
  49. [49]a)
    A. Schönhals, F. Kremer andE. Schlosser:Phys. Rev. Lett.,67, 999 (1991); b) to be published.ADSCrossRefGoogle Scholar
  50. [50]
    C. A. Angell:J. Phys. Chem.,68, 1917 (1964).Google Scholar
  51. [51]
    P. B. Macedo andA. Napolitano:J. Chem. Phys.,49, 1887 (1968).CrossRefADSGoogle Scholar
  52. [52]
    H. Tweer, N. Laberge andP. B. Macedo:J. Am. Ceram. Soc.,54, 121 (1971).CrossRefGoogle Scholar
  53. [53]
    A. C. Ling andJ. E. Willard:J. Phys. Chem.,72, 1918 (1968).CrossRefGoogle Scholar
  54. [54]
    C. A. Angell:J. Non-Cryst. Solids,102, 205 (1988);J. Phys. Chem. Solids,49, 863 (1988).CrossRefADSGoogle Scholar
  55. [55]
    C. T. Moynihan andJ. Schroeder:J. Non-Cryst. Solids,160, 52 (1993).CrossRefADSGoogle Scholar
  56. [56]
    K. Schmidt-Rohr andH. W. Spiess:Macromolecules,24, 5288 (1991).CrossRefGoogle Scholar
  57. [57]
    B. Geil andG. Hinze:Chem. Phys. Lett.,216, 51 (1993).ADSCrossRefGoogle Scholar
  58. [58]
    Y. H. Yeong andI. K. Moon: preprint.Google Scholar
  59. [59]
    N. Menon, S. R. Nagel andD. C. Venerus:Phys. Rev. Lett.,73, 963 (1994).ADSCrossRefGoogle Scholar
  60. [60]a)
    M. H. Cohen andG. S. Grest:Phys. Rev. B,20, 1077 (1979) b)M. H. Cohen andG. Grest:Adv. Chem. Phys.,48, 370 (1981).ADSCrossRefGoogle Scholar
  61. [61]
    W. C. Hasz andC. T. Moynihan:J. Non-Cryst. Solids,140, 285 (1992).CrossRefADSGoogle Scholar
  62. [62]
    C. A. Angell andK. J. Rao:J. Chem. Phys.,57, 470 (1972).CrossRefADSGoogle Scholar
  63. [63]
    C. A. Angell andD. L. Smith:J. Phys. Chem.,86, 3845 (1982).CrossRefGoogle Scholar
  64. [64]
    P. Dixon:Phys. Rev. B,42, 8179 (1990)MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    M. Goldstein:J. Chem. Phys.,51, 3728 (1969).CrossRefADSGoogle Scholar
  66. [66]
    J. H. Gibbs: inModern Aspects of the Vitreous State, edited byJ. D. McKenzie (Butteworths, London, 1960), Chapt. 7.Google Scholar
  67. [67]
    F. H. Stillinger andT. A. Weber:Phys. Rev. A,25, 978 (1982).ADSCrossRefGoogle Scholar
  68. [68]a)
    F. H. Stillinger andT. A. Weber:Science,228, 983 (1984); b)R. A. LaViolette andF. H. Stillinger:Phys. Rev. B.,35, 5446 (1987).ADSGoogle Scholar
  69. [69]a)
    L. V. Woodcock, C. A. Angell andP. A. Cheeseman:J. Chem. Phys.,65, 1565 (1976). b)C. A. Angell, P. A. Cheeseman andC. C. Phifer:Mater. Res. Soc. Symp. Proc.,63, 85 (1986); c)P. Vashishta, R. K. Kalia, J. P. Rino andI. Ebbsjo:Phys. Rev. B,41, 12197 (1990).ADSCrossRefGoogle Scholar
  70. [70]
    C. A. Scamehorn, P. H. Poole andC. A. Angell: to be published.Google Scholar
  71. [71]
    S. A. Brawer andM. J. Weber:J. Non-Cryst. Solids,38&39, 9 (1980).CrossRefGoogle Scholar
  72. [72]
    S. A. Brawer:Relaxation in Viscous Liquids (American Ceramic Society, Columbus, O., 1985).Google Scholar
  73. [73]
    P. Dixon andS. Nagel:Phys. Rev. Lett.,65, 1108 (1990).ADSCrossRefGoogle Scholar
  74. [74]
    R. Böhmer andC. A. Angell:Mater. Sci. Forum,119–121, 485 (1993).CrossRefGoogle Scholar
  75. [75]
    K. L. Ngai, R. W. Rendell andD. J. Plazek:J. Chem. Phys.,94, 3018 (1991).ADSCrossRefGoogle Scholar
  76. [76]a)
    R. Böhmer, K. L. Ngai, C. A. Angell andD. J. Plazek:J. Chem. Phys.,99, 4201 (1993); b)D. J. Plazek andK. L. Ngai:Macromolecules,24, 1222 (1991).ADSCrossRefGoogle Scholar
  77. [77]
    F. Alvarez, A. Allegria andJ. Colmenero:Phys. Rev. B,47, 125 (1993).ADSCrossRefGoogle Scholar
  78. [78]
    S. Havriliak andS. Negami:Polymer,8, 161 (1967).CrossRefGoogle Scholar
  79. [79]
    C. T. Moynihan, S. N. Chrichton andS. M. Opalka:J. Non-Cryst. Solids,131–133, 420 (1991).CrossRefGoogle Scholar
  80. [80]
    A. J. Kovacs, J. J. Aklonis, J. M. Hutchinson andA. R. Ramos:J. Polym. Sci.,17, 1097 (1979).Google Scholar
  81. [81]a)
    I. M. Hodge:J. Non-Cryst. Solids,131–133, 435 (1991); b)I. M. Hodge:J. Non-Cryst. Solids,169, 211 (1994).CrossRefGoogle Scholar
  82. [82]
    R. Böhmer andC. A. Angell: inDisorder Effects on Relaxational Processes, edited byA. Blumen andR. Richert (Springer, Berlin, 1994), p.3.Google Scholar
  83. [83]
    A. Q. Tool:J. Am. Ceram. Soc.,29, 240 (1946).CrossRefGoogle Scholar
  84. [84]
    O. S. Narayanaswamy:J. Am. Ceram. Soc.,54, 491 (1971).CrossRefGoogle Scholar
  85. [85]
    G. W. Scherer:J. Am. Ceram. Soc.,67, 504 (1984).Google Scholar
  86. [86]
    I. M. Hodge:Macromolecules,20, 2897 (1987).CrossRefGoogle Scholar
  87. [87]
    K. Takeda, O. Yamamuro, M. Oguni andH. Suga: 1995J. Phys. Chem. (in press).Google Scholar
  88. [88]
    M. H. Cohen andD. Turnbull:J. Chem. Phys.,34, 120 (1960).Google Scholar
  89. [89]
    C. A. Angell, L. E. Busse, E. E. Cooper, R. K. Kadiyala, A. Dworkin, M. Ghelfenstein, H. Szwarc andA. Vassal:J. Chim. Phys.,82, 267 (1985).Google Scholar
  90. [90]
    M. Oguni andC. A. Angell:J. Chem. Phys 73, 1948 (1980).ADSCrossRefGoogle Scholar
  91. [91]
    C. A. Angell:Ann. Rev. Phys. Chem.,34, 593 (1983).CrossRefGoogle Scholar
  92. [92]
    G. P. Johari, A. Hallbrucker andE. Mayer:Nature,330, 552 (1987);G. P. Johari, G. Astl andE. Mayer:J. Chem. Phys.,92, 809 (1990).ADSCrossRefGoogle Scholar
  93. [93]
    D. R. MacFarlane andC. A. Angell:J. Phys. Chem.,88, 759 (1984).CrossRefGoogle Scholar
  94. [94]
    C. A. Angell andE. J. Sare:Science,168, 280 (1970).ADSGoogle Scholar
  95. [95]
    R. O. Davies andG. O. Jones:Adv. Phys.,2, 370 (1953).ADSCrossRefGoogle Scholar
  96. [96]
    J. A. McMillan andS. C. Los:J. Chem. Phys.,42, 829 (1965).CrossRefADSGoogle Scholar
  97. [97]
    M. Sugisaki, H. Suga andS. Seki:J. Chem. Soc. Jpn.,41, 2591 (1968).CrossRefGoogle Scholar
  98. [98]a)
    A. H. Narten, C. G. Venkatesh andJ. A. Rice:J. Chem. Phys.,64, 1106 (1976); b)S. A. Rice andM. G. Sceats: inWater: A Comprehensive Treatise, edited byF. Franks, Vol.7 (Plenum Press, 1982), p. 83.ADSCrossRefGoogle Scholar
  99. [99]
    C. A. Angell andC. Tucker:J. Phys. Chem.,84, 268 (1980).CrossRefGoogle Scholar
  100. [100]
    D. D. Klug andY. P. Handa:J. Phys. Chem.,92, 3323 (1988).CrossRefGoogle Scholar
  101. [101]
    J. P. Devlin: submitted toJ. Phys. Chem. Google Scholar
  102. [102]
    C. A. Angell:J. Phys. Chem.,97, 6339 (1993).CrossRefGoogle Scholar
  103. [103]
    H. E. Stanley, C. A. Angell, U. Essman, M. Hemmati, P. H. Poole andF. Sciortino:Physica A,205, 122 (1994).ADSCrossRefGoogle Scholar
  104. [104]
    C. A. Angell:Pure Appl. Chem.,63, 1387 (1991).Google Scholar
  105. [105]
    C. A. Angell andE. J. Sare:J. Chem. Phys.,52, 1058 (1970).CrossRefADSGoogle Scholar
  106. [106]
    F. Spaepen andD. Turnbull:AIP Conf. Proc.,50, 73 (1979).CrossRefADSGoogle Scholar
  107. [107]a)
    M. O. Thompson, G. J. Galvin andJ. W. Mayer:Phys. Rev. Lett.,52, 2360 (1984); b)E. P. Donovan, F. Spaepen andD. Turbull:J. Appl. Phys.,57, 1795 (1985).ADSCrossRefGoogle Scholar
  108. [108]
    P. G. de Gennes:The Physics of Liquid Crystals (Oxford University Press, 1994).Google Scholar
  109. [109]
    S. Aasland andP. F. McMillan:Nature,369, 633 (1994).ADSCrossRefGoogle Scholar
  110. [110]
    C. A. Angell:Ann. Rev. Phys. Chem.,34, 593 (1983).CrossRefGoogle Scholar
  111. [111]
    P. H. Poole, F. Sciortino, T. Grande, H. E. Stanley andC. A. Angell:Phys. Rev. Lett.,73, 1632 (1994).ADSCrossRefGoogle Scholar
  112. [112]
    S. Borrick, S. Sastry andP. Debenedetti:J. Phys. Chem. (1995).Google Scholar
  113. [113]
    V. M. Glazov, S. N. Chizhevskaya andS. B. Evgen'ev:Russ. J. Phys. Chem.,43, 201 (1969).Google Scholar
  114. [114]
    M. Grabow (private communication) has observed density maxima and weak first-order phase transitions in computer-simulated supercooled liquid silicon.Google Scholar
  115. [115]a)
    A. Zipp andW. Kauzmann:Biochemistry,12, 4217 (1973); b)K. E. Prehoda andJ. L. Markley: inHigh Pressure Effects in Molecular Biophysics and Enzymology, edited byJ. L. Markley, C. A. Royer andD. Northrop (Oxford University Press, New York, N.Y.) (in press), references cited therein, andJ. L. Markley, private communication. It is important to bear in mind that while the unfolding transition may, like the melting of a small crystal, be a transition between two global minimafor the individual molecules, the phenomenon observed in a protein solution is the consequence of this event for very many such molecules, and this has the character of a high positive entropy change, small (net) negative volume change, chemical conversion process. In the transition range, individual molecules fluctuate between folded and unfolded states on time scales of ms in Markley's studies at ambient temperatures.CrossRefGoogle Scholar
  116. [116]
    I. E. T. Iben, D. Braunstein, W. Doster, H. Frauenfelder, M. K. Hong, J. B. Johnson, S. Luck, P. Ormos, A. Schulte, P. J. Steinbach, A. H. Xie andR. D. Young:Phys. Rev. Lett.,62, 1916 (1989).ADSCrossRefGoogle Scholar
  117. [117]
    H. Frauenfelder, S. G. Sligar andP. C. Wolynes:Science,254, 1598 (1991).ADSGoogle Scholar
  118. [118]
    W. Doster, A. Bachleitner, R. Dunau, M. Hiebi andE. Lüscher:Biophys. J.,50, 213 (1986).Google Scholar
  119. [119]
    V. I. Goldanskii, Yu. F. Krupyanskii andV. N. Fleurov:Dokl. Akad. Nauk SSSR,272, 978 (1983).Google Scholar
  120. [120]
    F. Parak, J. Heidemeier andG. U. Nienhaus:Hyperfine Interactions,40, 147 (1988).CrossRefADSGoogle Scholar
  121. [121]
    B. F. Rasmussen, A. M. Stock, D. Ringe andG. A. Petsko:Nature,357, 423 (1992).ADSCrossRefGoogle Scholar
  122. [122]
    K. Kuczera, J. Smith andM. Karplus:Proc. Natl. Acad. Sci. USA,87, 1601 (1990).ADSCrossRefGoogle Scholar
  123. [123]
    I. V. Sochava andO. I. Smirnova: inFood Hydrocolloids,6, 513 (1993).Google Scholar
  124. [124]
    J. L. Green, J. Fan andC. A. Angell:J. Phys. Chem.,98, 13780 (1994).CrossRefGoogle Scholar
  125. [125]
    W. Doster, S. Cusack andW. Petry:Nature (London),337, 754 (1989).ADSCrossRefGoogle Scholar
  126. [126]
    A. Petry, E. Bartsch, F. Fujara, M. Kiebel, H. Sillescu andB. Farrago:Z. Phys. B,83, 175 (1991).CrossRefADSGoogle Scholar
  127. [127]a)
    B. Frick andD. Richter:Phys. Rev. B,47, 14795 (1993); b)B. Frick, D. Richter, W. Petry andU. Buchenau:Z. Phys. B,70, 73 (1988).ADSCrossRefGoogle Scholar
  128. [128]
    A. Chahid, A. Alegria andJ. Colmenero:Macromolecules,27, 3282 (1994).CrossRefGoogle Scholar
  129. [129]
    U. Buchenau andR. Zorn:Europhys. Lett.,18, 523 (1992).ADSGoogle Scholar
  130. [130]
    J. Shao andC. A. Angell: to be published.Google Scholar
  131. [131]a)
    L. V. Woodcock:Chem. Phys. Lett.,10, 257 (1971);L. V. Woodcock, C. A. Angell andP. A. Cheeseman:J. Chem. Phys.,65, 1565 (1976).ADSCrossRefGoogle Scholar
  132. [132]
    T. H. Soules:J. Chem. Phys.,71, 4570 (1979).ADSCrossRefGoogle Scholar
  133. [133]
    A. Rahman, R. H. Fowler andA. H. Narten:J. Chem. Phys.,57, 3010 (1972).CrossRefADSGoogle Scholar
  134. [134]
    J. Kieffer andC. A. Angell:J. Non-Cryst. Solids,106, 336 (1988).CrossRefADSGoogle Scholar
  135. [135]
    R. J. Roe:J. Chem. Phys.,100, 1612 (1994).ADSCrossRefGoogle Scholar
  136. [136]
    C. Boussard, G. Fontaneau andJ. Lucas:J. Non-Cryst. Solids (in press).Google Scholar
  137. [137]
    A. J. Martin andW. Brenig:Phys. Status Solidi,64, 163 (1974).Google Scholar
  138. [138]
    E. Duval et al.:Phys. Rev. Lett.,56, 2052 (1986);A. Boukeneter et al.: Phys. Rev. Lett.,57, 2391 (1986);E. Duval et al.: J. Phys.: Condens. Matter,2, 10227 (1990).ADSCrossRefGoogle Scholar
  139. [139]
    V. N. Novikov andA. P. Sokolov:Solid State Commun.,77, 243 (1991);A. P. Sokolov, A. Kislink, M. Soltwisch andD. Quitmann:Phys. Rev. Lett.,69, 1540 (1992).CrossRefADSGoogle Scholar
  140. [140]
    L. Börjesson, A. K. Hassan, J. Swenson andL. M. Torell:Phys. Rev. Lett.,70, 4027 (1993).ADSCrossRefGoogle Scholar
  141. [141]
    A. K. Hassan, L. Borjesson andL. M. Torell:J. Non-Cryst. Solids,171–174, 154, (1994).CrossRefGoogle Scholar
  142. [142]
    J. Colmenero, A. Arbe andA. Alegria:Phys. Rev. Lett.,71, 2603 (1993).ADSCrossRefGoogle Scholar
  143. [143]
    J. Shao andC. A. Angell: to be published.Google Scholar
  144. [144]
    K.-L. Ngai:J. Chem. Phys.,98, 7588 (1993).ADSCrossRefGoogle Scholar
  145. [145]
    K.-L. Ngai: inDiffusion in Amorphous Solids, edited byH. Jain andD. Gupta (The Minerals, Metals, and Materials Society, 1994), p. 17.Google Scholar
  146. [146]
    P. Harrowell: private communication.Google Scholar
  147. [147]
    T. Atake andC. A. Angell:J. Phys. Chem.,83, 3218 (1979).Google Scholar
  148. [148]
    S. Cusack andW. Doster:Biophys. J.,58, 243 (1990).CrossRefGoogle Scholar
  149. [149]
    Recent developments are to be found in the two conference volumesJ. Non-Cryst. Solids.,131–133 (1991) and172–174 (1994).Google Scholar
  150. [150]
    C. A. Herbst, R. L. Cook andH. E. King:J. Non-Cryst. Solids,172–174, 265 (1994).CrossRefGoogle Scholar
  151. [151]
    L. Haar, J. Gallagher andG. Kell:G.S. National Bureau of Standards—National Research Council Steam Tables (McGraw Hill, 1985).Google Scholar

Copyright information

© Società Italiana di Fisica 1994

Authors and Affiliations

  • C. A. Angell
    • 1
  • P. H. Poole
    • 1
  • J. Shao
    • 1
  1. 1.Department of ChemistryArizona State UniversityTempeUSA

Personalised recommendations