A novel intact circular dsDNA supercoil

Abstract

A novel intact circular dsDNA supercoil is proposed as an alternative to the conventional DNA supercoil, so that the two complementary strands of ssDNA circles are separable without any covalent bond breakage. This new structure can be visualized by using two tubings: one black and one clear. Twist the black tubing a number of times and connect its two ends. Do the same for the clear tubing. Then wrap the two tubings together. This forms the separable or novel supercoil. On the other hand, the conventional supercoil can be modeled by twisting the black and clear tubings together and then connect their respective ends, so that the two tubings are not separable unless one of them is cut. Experimentally, in the absence of any enzyme, many intact plasmid dsDNA circles give two bands on agarose gel electrophoresis under a certain given condition, while the same plasmid molecules after cutting once by a restriction enzyme give only one band under the same, condition. In the case of intact pUC19 plasmids, these two bands can then be, recovered and sequenced separately, using two primers in opposite directions. Each band gives mostly one sequence which is complementary to that of the other band. The combination of the above theoretical model and experimental results strongly suggests that there is an alternative structure of DNA which does not have the usual difficulty of unwinding, rewinding and requiring numerous covalent bond breakages and ligations during semiconservative replication.

This is a preview of subscription content, log in to check access.

References

  1. Abramowitz, M. and I. A. Stegun. 1964.Handbook of Mathematical Functions. National Bureau of Standards, Applied Mathematical Series 55. Washington, DC: U.S. Goverment Printing Office.

    Google Scholar 

  2. Brahmachari, S. K., Y. S. Shouche, C. R. Cantor and M. McClelland. 1986. Sequences that adopt non-B-DNA conformation in form V DNA as probed by enzymic methylation.J. Mol. Biol.,193, 201–211.

    Article  Google Scholar 

  3. Casey, J. and N. Davidson. 1977. Rates of formation and thermal stabilities of RNA:DNA and DNA:DNA duplexes at high concentrations of formamide.Nucl. Acids Res. 4, 1539–1552.

    Google Scholar 

  4. DiGabriele, A. D. and T. A. Steitz. 1993. A DNA dodecamer containing tract crystallizes in a unique lattice and exhibits a new bend.J. Mol. Biol. 231, 1024–1039.

    Article  Google Scholar 

  5. Driscoll, R. J., M. G. Youngquist and J. D. Baldeschweieter. 1990. Atomic-scale imaging of DNA using scanning tunnelling microscopy.Nature 346, 294–296.

    Article  Google Scholar 

  6. Edwards, P. A. W.. 1978. A sequence-dependent, four-stranded, double Watson-Crick DNA helix that could solve the unwinding problems of double helices.J. Theor. Biol. 70, 323–334.

    Article  Google Scholar 

  7. Franklin, R. E. and R. G. Gosling. 1953. Molecular configuration in sodium thymonucleate.Nature 171, 740–741.

    Article  Google Scholar 

  8. Gehring, K., J.-L. Leroy and M. Gueron, 1993. A tetrameric DNA structure with protonated cytosine-cytosine base pairs.Nature 363, 561–565.

    Article  Google Scholar 

  9. Langridge, R., H. R. Wilson, C. W. Cooper, M. H. F. Wilkins and L. D. Hamilton. 1960. The molecular configuration of deoxyribonucleic acid I. X-ray diffraction study of crystalline form of lithium salt.J. Mol. Biol. 2, 19–37.

    Article  Google Scholar 

  10. Leroy, J.-L. and M. Gueron. 1995. Solution structures of thei-motif tetramers ofd(TCC),d(5methylCCT) andd(T5methylCC): novel NOE connections between amino protons and sugar protons.Structure 3, 101–120.

    Article  Google Scholar 

  11. McGavin, S., H. R. Wilson and G. C. Barr. 1966. Intercalated nucleic acid double helices: a stereochemical possibility.J Mol. Biol. 22, 187–191.

    Article  Google Scholar 

  12. Meselson, M. and F. W. Stahl. 1958. The replication of DNA inEscherichia coli Proc. Natl. Acad. Sci. USA,44, 671–682.

    Article  Google Scholar 

  13. Rich, A. 1995. The nucleic acids. A backward glance.Ann. NY Acad. Sci. 758, 97–142.

    Google Scholar 

  14. Saenger, W. 1984.Principles of Nucleic Acid Structure New York: Springer-Verlag.

    Google Scholar 

  15. Sambrook, J., E. F. Fritsch and T. Maniatis. 1989.Molecular Cloning, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  16. Stasiak, A. 1996. Getting down to the core of homologous recombination.Science 272, 828–829.

    Google Scholar 

  17. Stettler, U. H., H. Weber, T. Koller and C. Weissmann. 1979. Preparation and characterization of form V DNA, the duplex DNA resulting from association of complementary, circular single-stranded DNA.J. Mol. Biol. 131, 21–40.

    Article  Google Scholar 

  18. Watson, J. D. and F. H. C. Crick. 1953. Molecular structure of nucleic acids.Nature 171, 737–738.

    Article  Google Scholar 

  19. Wilkins, M. H. F., A. R. Stokes and H. R. Wilson. 1953. Molecular structure of deoxypentose nucleic acids.Nature 171, 738–740.

    Article  Google Scholar 

  20. Wu, T. T. 1968a. Strandedness of DNA at 92% relative humidity.Bull. Math. Biophys. 30, 681–686.

    Google Scholar 

  21. Wu, T. T. 1968b. Periodic conformations of deoxyribonucleic acids.Bull. Math. Biophys. 30, 687–700.

    Google Scholar 

  22. Wu, T. T. 1969a. A model for the tertiary structure of transfer ribonucleic acid.Bull. Math. Biophys 31, 395–402.

    Google Scholar 

  23. Wu, T. T. 1969b. Secondary structures of DNA.Proc. Natl. Acad. Sci. USA 63, 400–405.

    Article  Google Scholar 

  24. Wu, T. T. 1992. Intact double-stranded DNA plasmid molecules give two bands on agarose gel electrophoresis.FASEB J. 6, A223.

    Google Scholar 

  25. Wu, T. T. 1993. Strand separation of supercoiled intact circular dsDNA.FASEB J. 7, A1289.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, R., Te Wu, T. A novel intact circular dsDNA supercoil. Bltn Mathcal Biology 58, 1171–1185 (1996). https://doi.org/10.1007/BF02458388

Download citation

Keywords

  • Intensity Spot
  • Complementary Strand
  • Layer Line
  • Clear Tubing
  • Plasmid Molecule