Skip to main content
Log in

Some proposals in cardiac muscle mechanics and energetics

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Based on A. V. Hill's three-component model, mechanical properties of the contractile element (CE), such as velocity and tension, were determined as muscle shortening and loads in quick-release or afterloaded isotonic contraction. The method is applicable for studying cardiac mechanics, to obtain force-velocity data of the same CE length at varous afterloads.

Analysis of the energetics of cardiac muscle was based on simulation studies of cardiac mechanics (Wong 1971, 1972). By proper derivation, the conventional contractile element work (CEW) was found to be a minor energy determinant. The tension-time integral and tension-independent heat (Ricchiuti and Gibbs, 1965) represent energy utilization for activation and maintenance of tension, the primary energy determinant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Antic, R., L. J. Hirsch and L. N. Katz. 1965. “The Factors Controlling Myocardial Oxygen Consumption per Stroke per Minute.”Acta Cardiol.,20, 309–323.

    Google Scholar 

  • Badeer, H. S. 1963. “Relative Influence of Heart Rate and Arterial Pressure on Myocardial Oxygen Uptake.” —Ibid.,18, 356–365.

    Google Scholar 

  • Brady, A. J. 1965. “Time and Displacement Dependence of Cardiac Contractility: Problems in Defining the Active State and Force-Velocity Relations.”Fedn. Proc.,24, 1410–1420.

    Google Scholar 

  • —. 1966. “Onset of Contractility in Cardiac Muscle.”J. Physiol.,184, 560–580.

    Google Scholar 

  • — 1968. “Active State in Cardiac Muscle.”Physiol. Rev.,48, 570–600.

    Google Scholar 

  • Britman, N. A. and H. J. Levine. 1964. “Contractile Element Work: A Major Determinant of Myocardial Oxygen Consumption.”J. Clin. Invest.,43, 1397–1408.

    Google Scholar 

  • Chandler, B. M., E. H. Sonnenblick and P. E. Pool. 1968. “Mechanochemistry of Cardiac Muscle: III. Effects of Norepinephrine on the Utilization of High Energy Phosphates.”Circulation Res.,22, 729–735.

    Google Scholar 

  • Coleman, H. N. 1967. “Role of Acetylstrophanthidin in Augmenting Myocardial Oxygen Consumption.” —Ibid.,21, 487–495.

    Google Scholar 

  • — 1968. “Effect of Alterations in Shortening and External Work on Oxygen Consumption of Cat Papillary Muscle.”Am. J. Physiol.,214, 100–106.

    Google Scholar 

  • — 1971. “Determinants of Myocardial Energy Utilization.” InCardiac Hypertrophy, N. R. Alpert, ed., 485–509. New York: Academic Press.

    Google Scholar 

  • Covell, J. W., E. Braunwald, J. Ross, Jr. and E. H. Sonnenblick. 1966. “Studies on Digitalis. XVI. Effects on Myocardial Oxygen Consumption.”J. Clin. Invest.,45, 1535–1542.

    Article  Google Scholar 

  • Edman, K. A. P. and E. Nilsson. 1968. “The Mechanical Parameters of Myocardial Contraction Studied at a Constant Length of the Contractile Element.”Acta Physiol. Scand.,72, 205–219.

    Article  Google Scholar 

  • Fung, Y. C. 1970. “Mathematical Representation of the Mechanical Properties of the Heart Muscle.”J. Biomechanics,3, 381–404.

    Article  Google Scholar 

  • — 1971. “Comparison of Different Models of the Heart Muscle.” —Ibid.,4, 289–295.

    Article  Google Scholar 

  • Gibbs, C. L. 1967. “Role of Catecholamines in Heat Production in the Myocardium.”Circulation Res.,21, Suppl. 111, 223–242.

    Google Scholar 

  • —, W. F. H. M. Mommaerts and N. V. Ricchiuti. 1967. “Energetics of Cardiac Contractions.”J. Physiol.,191, 25–46.

    Google Scholar 

  • — and W. R. Gibson. 1969. “Effect of Ouabain on the Energy Output of Rabbit Cardiac Muscle.”Circulation Res.,24, 951–967.

    Google Scholar 

  • Graham, T. P., Jr, J. Ross, Jr., J. W. Covell, E. H. Sonnenblick and R. L. Clancy. 1967. “Myocardial Oxygen Consumption in Acute Experimental Cardiac Depression.” —Ibid.,21, 123–138.

    Google Scholar 

  • Gregg, D. E. 1963. The George E. Brown Memorial Lecture: “Physiology of the Coronary Circulation”.Circulation,27, 1128–1137.

    Google Scholar 

  • Hartree, W. and A. V. Hill. 1921. “The Regulation of the Supply of Energy in Muscular Contraction.”J. Physiol.,55, 133–158.

    Google Scholar 

  • Hefner, L. L. and T. E. Bowen, Jr. 1967. “Elastic Components of Cat Papillary Muscle.”Am. J. Physiol.,212, 1221–1227.

    Google Scholar 

  • Hill, A. V. 1950. “Mechanics of the Contractile Element of Muscle.”Nature,166, 415–419.

    Article  Google Scholar 

  • Jewell, B. R. and D. R. Wilkie. 1958. “Analysis of the Mechanical Components in Frog's Striated Muscle.”J. Physiol.,143, 518–540.

    Google Scholar 

  • Jewell, B. R. and J. R. Blinks. 1968. “Drugs and the Mechanical Properties of Heart Muscle.”Ann. Rev. Pharmacol.,8, 113–130.

    Article  Google Scholar 

  • Katz, L. N. and H. Feinberg. 1958. “The Relation of Cardiac Effort to Myocardial Oxygen Consumption and Coronary Flow.”Circulation Res.,6, 656–669.

    Google Scholar 

  • Krasnow, N., E. L. Rolett, P. M. Yurchak, W. B. Hood, Jr. and R. Gorlin. 1964. “Isoproterenol and Cardiovascular Performance.”Am. J. Med.,37, 514–525.

    Article  Google Scholar 

  • Lee, K. S. 1960. “The Relationship of the Oxygen Consumption to the Contraction of the Cat Papillary Muscle.”J. Physiol.,151, 186–201

    Google Scholar 

  • McDonald, R. H., Jr. 1966. “Developed Tension: A Major Determinant of Myocardial Oxygen Consumption.”Am. J. Physiol.,210, 351–356.

    Google Scholar 

  • —, R. R. Taylor and H. E. Cingolani. 1966. “Measurement of Myocardial Developed Tension and Its Relation to Oxygen Consumption.” —Ibid.,211, 667–673.

    Google Scholar 

  • Noble, M. I. M., T. E. Bowen and L. L. Hefner. 1969. “Force-Velocity Relationship of Cat Cardiac Muscle, Studied by Isotonic and Quick-Release Techniques.”Circulation Res.,24, 821–833.

    Google Scholar 

  • Parmley, W. W. and E. H. Sonnenblick. 1967. “Series Elasticity in Heart Muscle: Its Relation to Contractile Element Velocity and Proposed Muscle Models.” —Ibid.,20, 112–123.

    Google Scholar 

  • Pollack, G. H. 1970. “Maximum Velocity as an Index of Contractility in Cardiac Muscle: A Critical Evaluation.” —Ibid.,26, 111–127.

    Google Scholar 

  • Pool, P. E. and E. H. Sonnenblick. 1967. “The Mechanochemistry of Cardiac Muscle: I. The Isometric Contraction.”J. Gen. Physiol.,50, 951–965.

    Article  Google Scholar 

  • —, B. M. Chandler, S. C. Seagren and E. H. Sonnenblick. 1968. “Mechanochemistry of Cardiac Muscle: II. The Isotonic Contraction.”Circulation Res.,22, 465–472.

    Google Scholar 

  • Ricchiuti, N. V. and C. L. Gibbs. 1965. “Heat Production in a Cardiac Contraction.”Nature,208, 897–898.

    Article  Google Scholar 

  • Rodbard, S., F. Williams and C. Williams. 1959. “The Spherical Dynamics of the Heart (Myocardial Tension, Oxygen Consumption, Coronary Blood Flow and Efficiency).”Am. Heart J.,57, 348–360.

    Article  Google Scholar 

  • Sandberg, J. A. and F. D. Carlson. 1966. “The Length Dependance of Phosphorylcreatine Hydrolysis During an Isometric Tetanus.”Biochem. Z. 345, 212–231.

    Google Scholar 

  • Sarnoff, S. J., E. Braunwald, G. H. Welch, Jr., R. B. Case, W. N. Stainsby and R. Macruz. 1958. “Hemodynamic Determinants of Oxygen Consumption of the Heart with Special References to the Tension-Time Index. “Am. J. Physiol.,192, 148–156.

    Google Scholar 

  • Sonnenblick, E. H. 1962. “Implications of Muscle Mechanics in the Heart.”Fedn. Proc.,21, 975–990.

    Google Scholar 

  • —. 1964. “Series Elastic and Contractile Elements in Heart Muscle: Changes in Muscle Length.”Am. J. Physiol.,207, 1330–1338.

    Google Scholar 

  • —, J. Ross, Jr., J. W. Covell, G. A. Kaiser and E. Braunwald. 1965. “Velocity of Contraction as a Determinant of Myocardial Oxygen Consumption.” —Ibid.,209, 919–927.

    Google Scholar 

  • — 1967. “Acxtive State in Heat Muscle: Its Delayed Onsest and Modification by Inotropic Agents.”J. Gen. Physiol.,50, 661–676.

    Article  Google Scholar 

  • — and A. C. Stam, Jr. 1969. “Cardiac Muscle: Activation and Contraction.”Ann. Rev. Physiol.,31, 647–674.

    Article  Google Scholar 

  • Ullrick, W. C. 1964. “Characteristic Force-Velocity Equation of Rat Heart Muscle.”Am. J. Physiol.,206, 1285–1290.

    Google Scholar 

  • Whalen, W. J. 1957. “Oxygen Consumption and Tension of Isolated Heart Muscle During Rest and Activity Using a New Technic.”Circulation Res.,5, 556–561.

    Google Scholar 

  • — 1960. “Some Factors Which Influence the Oxygen Consumption of Isolated Heart Muscle.”Am. J. Physiol.,198, 1153–1156.

    Google Scholar 

  • Whalen, W. J. 1961. “The Relation of Work and Oxygen Consumption in Isolated Strips of Cat and Rat Myocardium.”J. Physiol.,157, 1–17.

    Google Scholar 

  • Wong, A. Y. K. 1971. “Mechanics of Cardiac Muscle Based on Huxley's Model: Mathematical Simulation of Isometric Contraction.”J. Biomechanics,4, 529–540.

    Article  Google Scholar 

  • — 1972. “Mechanics of Cardiac Muscle Based on Huxley's Model: Simulation of Active State and Force-Velocity Relations.” —Ibid.,4, 107–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, A.Y.K. Some proposals in cardiac muscle mechanics and energetics. Bltn Mathcal Biology 35, 375–399 (1973). https://doi.org/10.1007/BF02458344

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458344

Keywords

Navigation