Bulletin of Mathematical Biology

, Volume 41, Issue 4, pp 461–468 | Cite as

Chemical patterns in circular morphogenetic fields

  • J. Hiernaux
  • T. Erneux


A model of morphogenetic pattern formation recently proposed by Frenchet al. (1976) is investigated in relation to the properties of reaction-diffusion systems operating on two-dimensional circular medium. One of the basic requirements of this model is the existence of a circular morphogenetic gradient exhibiting no discontinuity. We explain how bifur-cation theory may account for the generation of such a spatial pattern through reaction-diffusion processes. For this, we study the emergence of multiple-order bifurcations.


Bifurcation Diagram Bifurcation Point Bifurcation Analysis Positional Information Primary Branch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auchmuty, J. F. G. and G. Nicolis. 1975. “Bifurcation Analysis of Nonlinear Reaction-Diffusion Equations—I Evolution Equations and the Steady State Solutions”.Bull. Math. Biol.,37, 323–365.MATHMathSciNetCrossRefGoogle Scholar
  2. Babloyantz, A. and J. Hiernaux. 1975. “Models for Cell Differentiation and Generation of Polarity in Diffusion Governed Morphogenetic Fields”.Bull. Math. Biol.,37, 637–657.MATHCrossRefGoogle Scholar
  3. Cooke, J. 1975. “The Emergence and Regulation of Spatial Organization in Early Animal Development”.Ann. Rev. Biophys. Bioengng,4, 185–217.CrossRefGoogle Scholar
  4. Fife, P. C. 1977. “Stationary Patterns for Reaction-Diffusion Equations”.Res. Notes Math. 14, 81–122.Google Scholar
  5. French, V., P. J. Bryant and S. V. Bryant. 1976. “Pattern Regulation in Epimorphic Fields”.Science,193, 969–981.Google Scholar
  6. Gierer, A. 1977. “Biological Features and Physical Concepts of Pattern Formation Exemplified by Hydra”.Curr. Topics Dev. Biol.,11, 17–57.CrossRefGoogle Scholar
  7. Gierer, A. and H. Meinhardt. 1972. “A Theory of Biological Pattern Formation”.Kybernetic,12, 30–39.CrossRefGoogle Scholar
  8. Herschkowitz-Kaufman, M. and T. Erneux. 1979. “The Bifurcation Diagram of Model Chemical Reactions”. To appear inAnn. N.Y. Acad. Sci. Google Scholar
  9. Hiernaux, 1976. “Modèles Théoriques de la Différenciation Cellulaire et de la Morphogénèse”. Ph. D. Thesis, Université Libre de Bruxelles.Google Scholar
  10. Kauffman, S. A., R. M. Shymko and K. Trabert. 1978. “Control of Sequential Compartment Formation inDrosophila”.Science 199, 259–270.Google Scholar
  11. Keener, J. P. 1976. “Secondary Bifurcations in Nonlinear Diffusion-Reaction Equations”.Stud. Appl. Math.,55, 187–211.MATHMathSciNetGoogle Scholar
  12. MacDonald, N. 1977. “A Polar Coordinate System for Positional Information in the Vertebrate Neural Retina”.J. Theor. Biol.,69, 153–165.MathSciNetCrossRefGoogle Scholar
  13. Maden, M. and R. N. Turner. 1978. “Supernumerary Limbs in the Axolotl”.Nature,273, 232–235.CrossRefGoogle Scholar
  14. Mahar, T. J. and B. J. Matkowsky 1977. “A Model Biochemical Reaction Exhibiting Secondary Bifurcation”.SIAM J. Appl. Math.,32, 394–404.MATHMathSciNetCrossRefGoogle Scholar
  15. Meinhardt, H. 1977. “A Model of Pattern Formation in Insect Embryogenesis”.J. Cell Sci.,23, 117–139.Google Scholar
  16. Meinhardt, H. and A. Gierer. 1975. “Application of a Theory of Biological Pattern Formation Based on Lateral Inhibition”.J. Cell. Sci. 15, 321–346.Google Scholar
  17. Othmer, H. 1977. “Current Theories of Pattern Formation”.Lect. Math. Life Sci.,9, 57–87.MATHMathSciNetGoogle Scholar
  18. Pavlidis, T. 1975. “Spatial Organization of Chemical Oscillations via an Averaging Operator”.J. Chem. Phys.,63, 5269–5273.CrossRefGoogle Scholar
  19. Slack, J. and S. Savage. 1978. “Regeneration of Reduplicated Limbs in Contravention of the Complete Circular Rule”.Nature,271, 760–761.CrossRefGoogle Scholar
  20. Stocum, D. L. 1978. “Regeneration of Symmetrical Hindlimbs in Larval Salamanders”.Science,200, 790–793.Google Scholar
  21. Turing, A. M. 1952. “The Chemical Basis of Morphogenesis”.Phil. Trans. R. Soc., Lond.,B237, 37–72.Google Scholar
  22. Winfree, A. 1974. “Wavelike Activity in Biological and Chemical Media”. In:Lecture Notes in Biomathematics, Ed. P. Van den Driessche, Berlin: Springer.Google Scholar
  23. Wolpert, L. 1969. “Positional Information and the Spatial Pattern of Cellular Differentiation”.J. Theor. Biol.,25, 1–47.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1979

Authors and Affiliations

  • J. Hiernaux
    • 1
  • T. Erneux
    • 1
  1. 1.Faculté des SciencesUniversité Libre de BruxellesBelgium

Personalised recommendations