Bulletin of Mathematical Biology

, Volume 56, Issue 1, pp 129–146 | Cite as

Chemotaxis and chemokinesis in eukaryotic cells: The Keller-Segel equations as an approximation to a detailed model

  • Jonathan A. Sherratt


More than 20 years after its proposal, Keller and Segel's model (1971,J. theor. Biol.,30, 235–248) remains by far the most popular model for chemical control of cell movement. However, before the Keller-Segel equations can be applied to a particular system, appropriate functional forms must be specified for the dependence on chemical concentration of the cell transport coefficients and the chemical degradation rate. In the vast majority of applications, these functional forms have been chosen using simple intuitive criteria. We focus on the particular case of eukaryotic cell movement, and derive an approximation to the detailed model of Sherrattet al. (1993,J. theor. Biol.,162, 23–40). The approximation consists of the Keller-Segel equations, with specific forms predicted for the cell transport coefficients and chemical degradation rate. Moreover, the parameter values in these functional forms can be directly measured experimentally. In the case of the much studied neutrophil-peptide system, we test our approximation using both the Boyden chamber and under-agarose assays. Finally, we show that for other cell-chemical interactions, a simple comparison of time scales provides a rapid check on the validity of our Keller-Segel approximation.


Chemical Concentration Approximate Model Boyden Chamber Chemical Diffusion Bacterial Chemotaxis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alt, W. 1980. Biased random walk models for chemotaxis and related diffusion approximations.J. Math. Biol. 9, 147–177.zbMATHMathSciNetCrossRefGoogle Scholar
  2. Alt, W. and D. A. Lauffenburger. 1987. Transient behaviour of a chemotaxis system modeling certain types of tissue inflammation.J. Math. Biol. 24, 691–722.zbMATHMathSciNetGoogle Scholar
  3. Balding, D. and D. L. S. McElwain. 1985. A mathematical model of tumor-induced capillary growth.J. theor. Biol. 114, 53–73.CrossRefGoogle Scholar
  4. Berg, H. C. 1988. A physicist looks at bacterial chemotaxis.Cold Spring Harb. Symp. Quant. Biol. 53, 1–9.Google Scholar
  5. Bignold, L. P. 1987. A novel polycarbonate (Nuclepore) membrane demonstrates chemotaxis, unaffected by chemokinesis, of polymorphonuclear leukocytes in the Boyden chamber.J. Immun. Meth. 105, 275–280.CrossRefGoogle Scholar
  6. Bignold, L. P. 1988. Measurement of chemotaxis of polymorphonuclear leukocytes in vitro.J. Immun. Meth. 108, 1–18.CrossRefGoogle Scholar
  7. Boon, J. P. and B. Herpigny. 1986. Model for chemotactic bacterial bands.Bull. math. Biol. 48, 1–19.zbMATHCrossRefGoogle Scholar
  8. Boyden, S. V. 1962. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes.J. exp. Med. 115, 453–466.CrossRefGoogle Scholar
  9. Buettner, H. M., D. A. Lauffenburger and S. H. Zigmond. 1989a. Cell transport in the Millipore filter assay.Am. Inst. Chem. Engng Jl 35, 459–465.Google Scholar
  10. Buettner, H. M., D. A. Lauffenburger and S. H. Zigmond. 1989b. Measurement of leukocyte motility and chemotaxis parameters with the Millipore filter assay.J. Immun. Meth. 123, 25–37.CrossRefGoogle Scholar
  11. Cassimeris, L. and S. H. Zigmond. 1990. Chemoattractant stimulation of polymorphonuclear leucocyte locomotion.Seminars Cell Biol. 1, 125–134.Google Scholar
  12. Caterina, M. J. and P. N. Devreotes. 1991. Molecular insights into eukaryotic chemotaxis.FASEB Jl 5, 3078–3085.Google Scholar
  13. Chaplain, M. A. J. and A. M. Stuart. 1991. A mathematical model for the diffusion of tumour angiogenesis factor into the surrounding host tissue.IMA J. Math. Appl. Med. Biol. 8, 191–220.zbMATHGoogle Scholar
  14. Charnick, S. B., E. S. Fisher and D. A. Lauffenburger. 1991. Computer simulations of cell-target encounter including biased cell motion toward targets: single and multiple cell-target simulations in two dimensions.Bull. math. Biol. 53, 591–621.zbMATHCrossRefGoogle Scholar
  15. Devreotes, P. N. and S. H. Zigmond. 1988. Chemotaxis in eukaryotic cells: a focus on leukocytes andDictyostelium.Ann. Rev. Cell Biol. 4, 649–686.Google Scholar
  16. Falk, W., R. H. Goodwin and E. J. Leonard. 1979. A 48-well micro chemotaxis assembly for rapid and accurate measurement of leukocyte migration.J. Immun. Meth. 33, 239–247.CrossRefGoogle Scholar
  17. Farrel, B. E., R. P. Daniele and D. A. Lauffenburger. 1990. Quantitative relationships between single-cell and cell population model parameters for chemosensory migration responses of alveolar macrophages to C5a.Cell. Motil. Cytoskel. 16, 279–293.CrossRefGoogle Scholar
  18. Ford, R. M. and D. A. Lauffenburger. 1991. Analysis of chemotactic bacterial distributions in population migration assays using a mathematical model applicable to steep or shallow attractant gradients.Bull. math. Biol. 53, 721–749.zbMATHCrossRefGoogle Scholar
  19. Gex-Fabry, M. and C. Delisi. 1984. Reeptor-mediated endocytosis: a model and its implications for experimental analysis.Am. J. Physiol. 247, R768-R7779.Google Scholar
  20. Harvath, L. and R. R. Aksamit. 1989. Human granulocytes and granulocytes from other species demonstrate differences in chemotactic responsiveness to oxidized N-formyl-methionyl-leucyl-phenylalanine.Comp. Biochem. Physiol. A 92, 97–100.CrossRefGoogle Scholar
  21. Janssens, P. M. W. and R. Van Driel. 1984.Dictyostelium discoideum cell membranes contain masked chemotactic receptors for cyclic AMP.FEBS Lett. 176, 245–249.CrossRefGoogle Scholar
  22. Janssens, P. M. W. and P. Van Haastert. 1987. Molecular basis of transmembrane signal transduction inDictyostelium discoideum.Microbiol. Rev. 51, 396–418.Google Scholar
  23. Kareiva, P. and G. Odell. 1987. Swarms of predators exhibit preytaxis if individual predators use area-restricted search.American Naturalist 130, 233–270.CrossRefGoogle Scholar
  24. Keller, E. F. 1980. Assessing the Keller-Segel model: howe has it fared? InBiological Growth and Spread, W. Jäger, H. Rost, and P. Tautu (Eds), Lecture Notes in Biomathematics, Vol. 38, pp. 379–387. Berlin: Springer.Google Scholar
  25. Keller, E. F. and L. A. Segel. 1971a. Model for chemotaxis.J. theor. Biol. 30, 225–234.CrossRefGoogle Scholar
  26. Keller, E. F. and L. A. Segel. 1971b. Travelling bands of chemotactic bacteria: a theoretical analysis.J. theor. Biol. 30, 235–248.CrossRefGoogle Scholar
  27. Lapidus, I. R. 1980. Pseudo-chemotaxis by microorganisms in an attractant gradient.J. theor. Biol. 86, 91–103.MathSciNetCrossRefGoogle Scholar
  28. Lapidus, I. R. and R. Schiller. 1976. Model for the chemotactic response of a bacterial population.Biophys. Jl 16, 779–789.CrossRefGoogle Scholar
  29. Lauffenburger, D. and R. Aris. 1979. Measurement of leukocyte motility and chemotaxis parameters using a quantitative analysis of the under-agarose migration assay.Math. Biosci. 44, 121–138.zbMATHCrossRefGoogle Scholar
  30. Lauffenburger, D., R. Aris and C. R. Kennedy. 1984. Traveling bands of chemotactic bacteria in the context of population growth.Bull. math. Biol. 46, 19–40.zbMATHCrossRefGoogle Scholar
  31. Lauffenburger, D., C. Rothman and S. H. Zigmond. 1983. Measurement of leukocyte motility and chemotaxis parameters with a linear under-agarose migration assay.J. Immun. 131, 940–947.Google Scholar
  32. Lauffenburger, D. A., R. T. Tranquillo and S. H. Zigmond. 1988. Concentration gradients of chemotactic factors in chemotaxis assays.Meth. Enzym. 162, 85–101.Google Scholar
  33. Lentz, T. L. 1971.Cell Fine Structure. Philadelphia: W. B. Saunders.Google Scholar
  34. Maini, P. K., M. R. Myerscough, K. H. Winters and J. D. Murray. 1991. Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation.Bull. math. Biol. 53, 701–719.zbMATHCrossRefGoogle Scholar
  35. Murray, J. D., D. C. Deeming and M. J. W. Ferguson. 1990. Size dependent pigmentation pattern formation in embryos ofAlligator mississipiensis: time of initiation of pattern formation mechanism.Proc. R. Soc. Lond. B 239, 279–293.CrossRefGoogle Scholar
  36. Nagai, T. and T. Ikeda. 1991. Traveling waves in a chemotactic model.J. math. Biol. 30, 169–184.zbMATHMathSciNetCrossRefGoogle Scholar
  37. Nelson, R. D., P. G. Quie and R. L. Simmons. 1975. Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes.J. Immun. 115, 1650–1656.Google Scholar
  38. Omann, G. M., R. A. Allen, G. M. Bokosh, R. G. Painter, A. E. Traynor and L. A. Sklar. 1987. Signal transduction and cytoskeletal activation in the neutrophil.Physiol. Rev. 67, 285–322.Google Scholar
  39. Pittenger, J. B. and C. H. Dent. 1988. A mechanism for the direct perception of change: the example of bacterial chemotaxis.Perception 17, 119–133.Google Scholar
  40. Rivero, M. A., R. T. Tranquillo, H. M. Buettner and D. A. Lauffenburger. 1989. Transport models for chemotactic cell populations based on individual cell behaviourChem. Engng Sci. 44, 2881–2897.CrossRefGoogle Scholar
  41. Rosen, G. 1985. Stable heterogeneous spatial distributions of oxygen and chemotacticescherichia coli with Verhulst limited population growth.J. theor. Biol. 112, 877–881.Google Scholar
  42. Rothman, C. and D. Lauffenburger. 1983. Analysis of the linear under-agarose leukocyte chemotaxis assay.Ann. Biomed. Engng 11, 451–477.Google Scholar
  43. Segel, L. A. 1976. Incorporation of receptor kinetics into a model for bacterial chemotaxis.J. theor. Biol. 57, 23–42.MathSciNetCrossRefGoogle Scholar
  44. Segel, L. A. 1977. A theoretical study of receptor mechanisms in bacterial chemotaxis.SIAM J. Appl. Math. 32, 653–665.zbMATHCrossRefGoogle Scholar
  45. Segel, L. A. 1980. Analysis of population chemotaxis. InAnalysis of Population Chemotaxis, L. A. Segel (Ed.), pp. 486–501. Cambridge. Cambridge University Press.Google Scholar
  46. Segel, L. A. 1984. Taxes in cellular ecology. InMathematical Ecology, Proceedings, Trieste 1982, S. A. Levin and T. G. Hallam (Eds), Lecture Notes in Biomathematics, Vol. 54, pp. 407–424. Berlin. Springer.Google Scholar
  47. Segel, L. A., A. Goldbeter, P. N. Devreotes and B. E. Knox. 1986. A mechanism for exact sensory adaptation based on receptor modification.J. theor. Biol. 120, 151–179.MathSciNetGoogle Scholar
  48. Sherratt, J. A., E. H. Sage and J. D. Murray. 1992. Chemical control of eukaryotic cell movement: a new model.J. theor. Biol. 162, 23–40.CrossRefGoogle Scholar
  49. Sklar, L. A., D. A. Finney, Z. G. Oades, A. L. Jesaitis, R. G. Painter and C. G. Cochrane. 1984. The dynamics of ligand-receptor interactions.J. Biol. Chem. 259, 5661–5669.Google Scholar
  50. Smith, G. D. 1985.Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford: Clarendon Press.zbMATHGoogle Scholar
  51. Snyderman, R. and E. J. Fudman. 1980. Demonstration of a chemotactic factor receptor on macrophages.J. Immun. 124, 2754–2757.Google Scholar
  52. Stickle, D. F., D. A. Lauffenburger and R. P. Daniele. 1985. The motile response of lung macrophages: theoretical and experimental approaches using the linear under-agarose assay.J. Leukoc. Biol. 38, 383–401.Google Scholar
  53. Sullivan, S. J. and S. H. Zigmond. 1980. Chemotactic peptide receptor modulation in polymorphonuclear leukocytes.J. Cell Biol. 85, 703–711.CrossRefGoogle Scholar
  54. Tranquillo, R. T., D. A. Lauffenburger and S. H. Zigmond. 1988a. A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations.J. Cell Biol. 106, 303–309.CrossRefGoogle Scholar
  55. Tranquillo, R. T., S. H. Zigmond and D. A. Lauffenburger. 1988b. Measurement of the chemotaxis coefficient for human neutrophils in the under-agarose migration assay.Cell Motil. Cytoskel. 11, 1–15.CrossRefGoogle Scholar
  56. Van Haastert, P. J. M. 1983. Sensory adaptation ofDictyostelium discoideum cells to chemotactic signals.J. Cell Biol. 96, 1559–1565.CrossRefGoogle Scholar
  57. Van Haarstert, P. J. M. 1987. Down-regulation of cell surface cyclic AMP receptors and desensitization of cyclic AMP-stimulated adenylate cyclase by cyclic AMP inDictyostelium discoideum. Kinetics and concentration dependence.J. biol. Chem. 262, 7700–7704.Google Scholar
  58. Zigmond, S. H. 1981. Consequences of chemotactic peptide receptor modulation for leukocyte orientation.J. Cell. Biol. 88, 644–647.CrossRefGoogle Scholar
  59. Zigmond, S. H. 1989. Cell locomotion and chemotaxis.Curr. Op. Cell Biol. 1, 80–89.CrossRefGoogle Scholar
  60. Zigmond, S. H. and J. G. Hirsch. 1973. Leukocyte locomotion and chemotaxis: new methods for evaluation and demonstration of a cell-derived chemotactic factor.J. Exp. Med. 137, 387–410.CrossRefGoogle Scholar
  61. Zigmond, S. H., S. J. Sullivan and D. A. lauffenburger. 1982. Kinetic analysis of chemotactic peptide receptor modulation.J. Cell Biol. 92, 34–43.CrossRefGoogle Scholar
  62. Zimmerli, W., B. Seligmann and J. I. Gallin. 1986. Exudation primes human and guinea pig neutrophils for subsequent responsiveness to chemotactic peptide N-formylmethionylleucylphenylalanine and increases complement component C3bi receptor expression.J. Clin. Invest. 77, 925–933.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1993

Authors and Affiliations

  • Jonathan A. Sherratt
    • 1
    • 2
  1. 1.Centre for Mathematical BiologyMathematical InstituteOxfordUK
  2. 2.Nonlinear Systems Laboratory, Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations