Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 123, Issue 6, pp 562–564 | Cite as

Catecholamines in the adrenals of August and Wistar rats with acute emotional stress

  • S. S. Pertsov
  • E. V. Koplik
  • W. Krause
  • N. Michael
  • P. Oehme
  • K. V. Sudakov
General Pathology and Pathological Physiology

Abstract

Acute emotional stress caused by immobilization and cutaneous electrical stimulation increases the relative weight of adrenals in Wistar rats and decreases it in August rats. The epinephrine and norepinephrine contents of the adrenals in control and stressed August rats are higher than in Wistar rats. Acute stress lowers the levels of these biogenic amines in the adrenals of both strains, particularly in Wistar rats. The left adrenal gland of control and stressed August rats, but not of Wistar rats, has a higher content of biogenic amines than the right, and both adrenals of stressed August rats contained higher dopamine concentrations than those of stressed Wistar rats. Presumably, epinephrine and norepinephrine are resynthesized in the adrenals of stressed August rats at higher rates than they are released from these glands, while the adrenals of Wistar rats respond to stress by rapidly releasing these catecholamines and resynthesizing them at a slow rate.

Key Words

emotional stress August rats Wistar rats adrenals epinephrine norepinephrine dopamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Abramov, V. I. Konenkov, and I. A. Gontova,Dokl. Akad. Nauk SSSR,322, No. 4, 802–805 (1992).Google Scholar
  2. 2.
    M. g. Airapetyants, in:Transactions of the Scientific Council on Experimental and Applied Physiology, K. V. Sudakov (Ed.) [in Russian], Vol. 1, Moscow (1992), pp. 103–111.Google Scholar
  3. 3.
    I. P. Anokhina, in:Motivation and Emotional Stress [in Russian], Moscow (1987), pp. 3–8.Google Scholar
  4. 4.
    S. S. Pertsov, “Investigation into the role of interleukin-1β in the mechanisms of resistance to acute emotional stress,” Author's Synopsis of Dissertation [in Russian], Moscow (1995).Google Scholar
  5. 5.
    K. V. Sudakov, in:Transactions of the Scientific Council on Experimental and Applied Physiology, K. V. Sudakov (Ed.) [in Russian], Vol. 1, Moscow (1992), pp. 7–27.Google Scholar
  6. 6.
    K. V. Sudakov,Pat. Fiziol., No. 1, 3–8 (1995).Google Scholar
  7. 7.
    F. I. Furdui, in:Mechanisms of Stress Development [in Russian], Kishinev (1987), pp. 8–33.Google Scholar
  8. 8.
    P. G. Andreis, G. Neri, A. S. Belloni,et al., Endocrinology,129, 53–57 (1991).PubMedGoogle Scholar
  9. 9.
    C. A. Dinarello,Blood,77, No. 8, 1627–1632 (1991).PubMedGoogle Scholar
  10. 10.
    A. J. Dunn,J. Neurochem.,61, S126 (1993).Google Scholar
  11. 11.
    H. Selye,J. Clin. Endocrinol.,6, 117–230 (1946).Google Scholar
  12. 12.
    J. R. Tobin, M. J. Breslow, and R. J. Traystman,Am. J. Physiol.,256, No. 25, H233-H239 (1989).Google Scholar
  13. 13.
    J.-P. Voigt, G. Kaufmann, B. Hirsch,et al., Exp. Clin. Endocrinol.,102, 111–117 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    N. Yanagihara, K. Minami, F. Shirakawa,et al., Biochem. Biophys. Res. Commun.,198, No. 1, 81–87 (1994).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • S. S. Pertsov
    • 1
  • E. V. Koplik
    • 1
  • W. Krause
    • 2
  • N. Michael
    • 2
  • P. Oehme
    • 2
  • K. V. Sudakov
    • 1
  1. 1.P. K. Anokhin Institute of Normal PhysiologyRussian Academy of Medical SciencesMoscow
  2. 2.Institute of Molecular PharmacologyBerlin

Personalised recommendations