Advertisement

Portable clinical tracking-task instrument

  • A. R. Potvin
  • J. A. Doerr
  • J. T. Estes
  • W. W. Tourtellotte
Article

Abstract

It has been known that tracking tasks can be useful for detecting small but significant changes in neurological function. However the size, cost and complexity of the equipment have, to date, precluded their widespread use for evaluation of clinical trials. In development for nine years, a battery of tremour and tracking tasks has been designed and evaluated. It is portable, and easy to administer and score. It evaluates neurological functions associated with steadiness, reaction time, speed, and co-ordination of the upper extremities. Instrumentation includes a central electronics package with power supply and test timers, a digital data readout, a television display, a chart recorder, and position, force, and accelerometer transducers. Available tests include force steadiness, resting and sustention tremour, and random, sinusoid, step and critical tracking in pursuit and compensatory modes. Data analysis can be online or offline.

Keywords

Instrumentation Neurophysiology Tracking 

Sommaire

Il est bien connu que le dépistage peut servir à détecter les variations faibles, bien que significatives, des fonctions neurologiques. Toutefois, la taille, le coût et la complexité des équipements ont, jusqu'ici, empêché leur application généralisée pour l'évaluation des tests cliniques. Neuf ans de travaux de mise au point ont abouti à l'étude et l'évaluation d'une batterie de dépistage et de détection de tremblements. Elle est portable, et facile à utiliser. Elle évalue les fonctions neurologiques correspondant à la régularité, le temps de réaction, la vitesse et la coordination des extrémités supérieures du corps. Les appareils de mesure comprennent un groupe électronique central avec unité d'alimentation et minuteries de test, un affichage de données numériques un tube cathodique de visualisation, un enregistreur à bande, ainsi que des transducteurs de position, de force et d'accéléromètres. Les tests prévus comportent, entre autres, la régularité de la force, le tremblement au repos et en sustentation, ainsi que le dépistage aléatoire, sinusoïdale, pas-à-pas et critique en modes de poursuite et de compensation. L'analyse des données peut se faire en mode direct ou autonome.

Zusammenfassung

Es ist bekannt, daß Eingrenzungsaufgaben für das Auffinden geringfügiger, jedoch bedeutsamer Änderungen in der neurologischen Funktion nützlich sein können. Größe, Kosten und Kompliziertheit der Ausrüstung haben ihre weitgehende Anwendung zur Auswertung klinischer Versuche jedoch bisher verhindert. In neunjähriger Entwicklungsarbeit ist nunmehr eine Zitter-und Spureneingrenzungsbatterie entwickelt und ausgewertet worden. Sie isttragbar und leicht zu benutzen. Sie wertet neurologische Funktionen in Verbindung mit Beständigkeit, Reaktionszeit, Geschwindigkeit und Koordinierung der oberen Extremitäten aus. Die Instrumentenausstattung schließt ein zentrales Elektronik-Paket mit Netzteil und Prüfzeitschaltern, eine digitale Datenauslesung, eine Fernsehanzeige, einen Streifenblattschreiber sowie Positions-, Kraft- und Beschleunigungsmesser-Wandler ein. Die verfügbaren Tests umfassen Kraftbeständigkeit, Ruhe- und Aushaltezittern und wahllose-, sinusähnliche-, stufenartige- und kritische Spureneingrenzung in Verfolgungs- und Ausgleichs-Betriebsarten. Die Datenanalyse kann systemabhängig oder systemunabhängig erfolgen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, J. W., Tourtellote, W. W., Pew, R. W., andPotvin, A. R. (1969) Quantification of motor performance in the clinical neurological examination. Proceedings of the 8th International Conference on Medical & Biological Engineering and the 22nd Annual Conference on Engineering in Medicine & Biology. 4–12.Google Scholar
  2. Albers, J. W., Potvin, A. R., Tourtellotte, W. W., Pew, R. W., andStribley, R. S. (1973). Quantification of hand tremour in the clinical neurological examination.IEEE Trans. BME-20, 27–37.Google Scholar
  3. Bowen, F. P., Holhn, M. M. andYahr, M. D. (1972). Cerebral dominance in relation to tracking and tapping performance in patients with Parkinsonism.Neurology,22, 32Google Scholar
  4. Cassell, K., Shaw, K., andStern, G. (1973). A computerised tracking technique for the assessment of Parkinsonism motor disabilities.Brain,96, 815–826.Google Scholar
  5. Domino, E. F., Albers, J. W., Potvin, A. R., Repa, B. S., andTourtellotte, W. W. (1972). Effects of d-amphetamine on quantitative measures of motor performance. Clin. Pharm. Ther.13, 251–257.Google Scholar
  6. Fitts, P. M., andPosner, M. I. (1967).Human performance. Brooks/Cole, Calif.Google Scholar
  7. Gilson, R. (1966). Some results of amplitude distribution experiments on shift-register generated pseudorandom noise.IEEE Trans.,EC, 926–927.Google Scholar
  8. Herzog, J. W. (1967). Operation manual: variable dynamics control stick. Private communication, University of Michigan.Google Scholar
  9. Jex, H. R., andAllan, R. W. (1970) Research on a new human dynamic response test battery. Sixth Annual Conference on Manual Control. Wright-Patterson AFB, Ohio.Google Scholar
  10. Jex, H. R., McDonnell, J. D., andPhatah, A. V. (1966). A critical tracking task for manual control research.IEEE Trans. HFE-7, 138–145.Google Scholar
  11. McRuer, D. T., Dunstan, G., Krendel, E., andReisener, W. (1965). Human pilot dynamics in compensatory systems-theory, models and experiments with controlled element and forcing function variations, AFFDL-TR-65-15.Google Scholar
  12. McRuer, D. T., andKlein, R., (1975). Effects of automobile steering characteristics on driver vehicle system dynamics in regulation tasks. Eleventh Annual Conference on Manual Control. Ames Research Center, 408–439.Google Scholar
  13. Potvin, A. R., Albers, J. W., Tourtellotte, W. W., Pew, R. W., andSnyder, D. N. (1971). The development of clinical instruments for measuring steadiness. 24th Annual Conference on Engineering in Medicine & Biology. 104.Google Scholar
  14. Potvin, A. R., andTourtellotte, W. W. (1974a). Cybernetics: a quantitative clinical neurological approach. Proceedings of the International Conference on Systems, Man & Cybernetics, Dallas, 191–196.Google Scholar
  15. Potvin, A. R., Albers, J. W., Repa, B. S., Henderson, W. G., Walker, J. E., Stribley, R. F., Pew, R. W., andTourtellotte, W W (1974b). Quantitative evaluation of neuropharmacological trials.Clin Pharm. Therap. 15, 229–241.Google Scholar
  16. Potvin, A. R., andTourtellotte, W. W. (1975). The neurological examination: advancements in its quantification. Arch. Phys. Med. Rehab.56, 425–437.Google Scholar
  17. Potvin, A. R., Stribley, R. F., Pew, R. W., Albers, J. W., andTourtellotte, W. W. (1975a). A battery of tests for evaluating steadiness in clinical trials.Med. & Biol. Eng. 13, 914–922.Google Scholar
  18. Potvin, A. R., Tourtellotte, W. W., Snyder, D. N., Henderson, W. G., andAlbers, J. W. (1975b). Validity of quantitative tests measuring tremour.Am. J. Phys. Med. 54, 243–252.Google Scholar
  19. Potvin, A. R., Salamy, J. G., Crosier, W. G., Jones, K. W., andDoerr, J. A. (1975c). Effects of secobarbitol on performance upon arousal from stage 4 sleep.Appl. Neurophysiol. 38, 240–250.Google Scholar
  20. Potvin, A. R., Crosier, W. G., andTourtellotte, W. W. (1976) Analysis of tracking task measures applicable to normal and pathological subjects. 29th Annual Conference on Engineering in Medicine & Biology, Boston.Google Scholar
  21. Potvin, A. R., Crosier, W. G., andTourtellotte, W. W. (1977) Analysis of clinically relevant tracking task measures. Manuscript in preparation.Google Scholar
  22. Repa, B. S. (1972). The use of a tracking test battery in the quantitative evaluation of neurological function. Ph.D. thesis, University of Michigan.Google Scholar
  23. Repa, B. S., Albers, J. W., Potvin, A. R. andTourtellotte, W. W. (1975). Application of tracking tasks in the neurofunction laboratory. Technical Report, VA Wadsworth Hospital Center.Google Scholar
  24. Snodgrass, J. G. (1969) Foreperiod effects in simple reaction time: anticipation or expectancy?J. Exp. Psychol. 79, 1–19.CrossRefGoogle Scholar
  25. Stark, L., andIida, M. (1961). Dynamical response of the movement coordination of patients with Parkinson syndrome. Research Laboratory of Electronics, Quarterly Progress Report 63, Massachusetts Institute of Technology.Google Scholar
  26. Tourtellotte, W. W., Potvin, A. R., Hirsch, S. B., Morgan, A., Henderson, W. G., Schoellhammer, H., andRichards, S. I. (1975) MK-130 versus Cogentin in a clinical trial: a double blind-cross-over study. Technical Report, VA Wadsworth Hospital Center.Google Scholar
  27. Walker, J. E., Potvin, A. R., Tourtellotte, W. W., Albers, S. W., Repa, B. S., Henderson, W. G. andSnyder, D. N. (1972) Amantadine and levo-dopa in the treatment of Parkinson's disease.Clin. Pharm. Therap. 13, 28–36.Google Scholar
  28. Young, L. R., andStark, L. (1975) Biological control systems—a critical review and evaluation: developments in manual control. National Aeronautics & Space Administration Report CR-190.Google Scholar

Copyright information

© International Federation for Medical & Biological Engineering 1977

Authors and Affiliations

  • A. R. Potvin
    • 1
  • J. A. Doerr
    • 2
  • J. T. Estes
    • 3
  • W. W. Tourtellotte
    • 4
  1. 1.Department of Biomedical EngineeringUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.LTV AerospaceGrand PrairieUSA
  3. 3.Bell HelicopterHurstUSA
  4. 4.Neurology & Research ServicesV.A. Wadsworth Hospital and UCLAUSA

Personalised recommendations