Skip to main content

Advertisement

Log in

Functional model for the characterisation of the ventricular mechanics of the human subject

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The ventricular elastance concept (instantaneous pressure-volume ratio) has been used extensively in characterising the ventricular mechanics of animal hearts. In the paper, this technique is extended to the characterisation of the ventricular mechanics of the normal and failing human heart. Techniques for the processing of catheterisation data are discussed and the results indicate the feasibility of using this simple method to assess routinely the ventricular mechanics of the human subject undergoing cardiac catheterisation.

Sommaire

On a fait un usage considérable du concept d'élastance ventriculaire (rapport instantané volume/pression) en ce qui concerne la caractérisation des mécanismes ventriculaires du coeur des animaux. Dans ce rapport, on a élargi cette technique à la caractérisation des mécanismes ventriculaires du coeur humain normal et du coeur défaillant. Des techniques pour le traitement des données de cathétérisation sont examinée et les résultats montrent qu'il est possible d'employer cette méthode simple pour établir d'une façon courante les mécanismes ventriculaires d'un être humain subissant une cathétérisation cardiaque.

Zusammenfassung

Der Begriff der Ventrikelelastanz (Verhältnis Momentandruck/Volumen) ist weitgehent für die Kennzeichnung der Vetrikelmechanik von Tierherzen verwendet worden. In diesem Beitrag wird das Verfahren auf die Kenzeichnung der Ventrikelmechanik des normalen und kranken menschlichen Herzens ausgedehnt. Es werden Verfahren für die Verarbeitung von Katheterisationsdaten besprochen und die Resultate deuten auf die Durchführbarkeit dieses einfachen Verfahrens zur routinemäßigen Bestimmung der Ventrikelmechanik eines menschlichen Patienten hin, der Herz-Katheterisation unterworfen wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braunwald, E. andSonnenblick, E. H. (1967)Mechanisms of contraction of the normal and failing heart, Little, Brown & Co., Boston Mass.

    Google Scholar 

  • Dekker, D. L., Piziali, R. L. andDong, E. (1974) A system for ultrasonically imaging the human heart in three dimensions.Computers and biomedical research 7, 544–553.

    Article  Google Scholar 

  • Donders, J. J. H. andBeneken, J. E. W. (1971) Computer model of cardiac muscle mechanics.Circ. Res. 29, Suppl. 1, 34–50.

    Google Scholar 

  • Gold, B. andRader, C. M. (1969)Digital proceessing of signals. McGraw-Hill, New York.

    Google Scholar 

  • Greene, D., Carlisle, R., Grant, C. andBrunnell, I. (1967) Estimation of left ventricular volume by one-plane cineangiography.Circ. 35, 61.

    Google Scholar 

  • Greene, M. E., Clark, J. W., Mohr, D. N. andBourland, H. M. (1973) A mathematical model of left ventricular function.Med. & Biol. Eng.,11, 125–134.

    Google Scholar 

  • Greene, M. E. andClark, J. W. (1973) The innervated left ventricle: A mathematical model of ventricular function.Med. & Biol. Eng.,11, 464–468.

    Google Scholar 

  • Greene, M. E. andClark, J. W. (1974) On modelling the function of sympathetic ventricular fibres.Med. & Biol. Eng. 12, 664–674.

    Google Scholar 

  • Greene, M. E., Nudelman, H. B. andClark, J. W. (1975) The responses of the left ventricle to left sympathetic burst-like stimulation.Med. & Biol. Eng. (in press).

  • Greville, T. N. E. (1969) Introduction to spline functions. InTheory and application of spline functions. Academic Press, New York.

    Google Scholar 

  • Hunt, B. R. (1970) The inverse problem of radiography.Math. Biomech.,8, 161–179.

    MATH  Google Scholar 

  • Kasser, I. S. andKennedy, J. W. (1969) Measurement of left ventricular volumes in man by single plane cineangiocardiography.Invest. Radiol. 2, 83–90.

    Google Scholar 

  • Kloster, F. E., Bristow, J. D., Porter, G. A., Judkins, M. P. andGriswold, H. E. (1967) Comparative hemodynamic effects of equiosmolar injections of angiographic contrast materials.Invest. Radiol. 2, 353–359.

    Google Scholar 

  • Mason, D. T. et al., (1971) Comparison of the contractile state of the normal, hypertrophied and failing heart in man.Cardiac Hypertrophy, N. R. Alper, Ed., Academic Press, New York, 433–444.

    Google Scholar 

  • Mirsky, I. (1969) Left ventricular stresses in the intact human heart.Biophys. J. 9, 189–208.

    Google Scholar 

  • Noordergraaf, A. (1969)Hemodynamics in biological engineering, H. P. Schwan, Ed., Chap. 5.

  • Ross, J. Jun,et al. (1966) Contractile state of the heart characterised by force-velocity relations in variably afterloaded and isovolumic beats.Circ. Res. 48, 149–163.

    Google Scholar 

  • Sandler, H. andDodge, H. T. (1963) Left ventricular tension and stress in man.Circ. Res. 13, 91–104.

    Google Scholar 

  • Sandler, H. andDodge, H. T. (1968) The use of single plane angiocardiograms for the calculation of left ventricular volume in man.Amer. Heart. J. 75, 325–334.

    Article  Google Scholar 

  • Schultz, M. H. (1973)Spline analysis, Prentice-Hall Inc., Englewood Cliffs, NY.

    MATH  Google Scholar 

  • Sonnenblick, E. H. (1969) The mechanics of myocardial contraction, inThe myocardial cell, S. A. Briller and H. L. Conn, Jun. (Eds.), University of Pennsylvania, Press, Philadelphia, Pa., 173–250.

    Google Scholar 

  • Streeter, D. D.,et al. (1970) Stress distribution in the canine left ventricle during diastole and systole.Biophys. J. 10, 345–363.

    Article  Google Scholar 

  • Suga, H. (1969) Time course of left ventricular pressure-volume relationship under various end-diastolic volumes.Japan Heart J.,10, 509–515.

    Google Scholar 

  • Suga, H. (1971) Left-ventricular time-varying pressure-volume ratio in systole as an index of myocardial inotropism.Japan. Heart J. 12, 153–160.

    Google Scholar 

  • Suga, H. (1972) Theoretical analysis of a left ventricular pumping model based on the systolic time-varying pressure-volume ratio.IEEE Trans. BME-18, 47–55.

    Google Scholar 

  • Suga, H. andSugawa, K. (1972) Mathematical interelationship between instantaneous ventricular pressure volume ratio and myocardial force-veocity relation.Annals of Biomed. Eng.,1, 160–181.

    Google Scholar 

  • Suga, H., Sagawa, K. andShoukas, A. A. (1973) Load impedance of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine on the ratio.Circ. Res. 32, 314–322.

    Google Scholar 

  • Wong, A. Y. K. (1968) Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell.Amer. Heart J. 75, 649–662.

    Article  Google Scholar 

  • Yanof, H. M. (1965) Introduction to biomedical instruments, InBiomedical electronics, Chap. 11.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, J.W., Pruett, R.C., Baldridge, D.L. et al. Functional model for the characterisation of the ventricular mechanics of the human subject. Med. Biol. Eng. Comput. 15, 335–348 (1977). https://doi.org/10.1007/BF02457985

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02457985

Keywords

Navigation