Advertisement

Medical and Biological Engineering and Computing

, Volume 30, Issue 5, pp 525–532 | Cite as

Mathematical model for the exchange of gases in the lungs with special reference to carbon monoxide

  • S. Selvakumar
  • Maithili Sharan
  • M. P. Singh
Modelling

Abstract

A mathematical model has been formulated for the simultaneous exchange of gases O2, CO2, CO and N2 in the lungs. The model takes into account the physiological parameters, such as ventilation rate, diffusing capacity of the lungs, cardiac output, total volume of blood in the body and the interaction of gases in the blood. The nonlinear functions for representing O2, CO2 and CO dissociation curves have been used. The results predicted from the model are in good agreement with those based on the ventilation/perfusion relationships. The COHb build-up in the blood, computed from the model as a function of exposure time, is in good agreement with the experimental values. The consideration of capillary blood pO2 as a constant value, instead of an independent variable, is shown to introduce a maximum error of 0·25 per cent in the blood COHb. The model is applied to analyse the COHb levels at high altitude.

Keywords

Blood carboxyhaemoglobin level Carbon monoxide Computer simulation Gas exchange in the lungs High altitude Matheamtical model Oxygen and CO dissociation curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coburn, R. F., Forster, R. E. andKane, P. B. (1965) Consideration of the physiological variables that determine the blood carboxyhaemoglobin concentration in man.J. Clin. Invest.,44, 1899–1910.CrossRefGoogle Scholar
  2. Coburn, R. F. andForman, H. J. (1987) Carbon monoxide toxicity. In:Handbook of physiology. The respiratory system. Am. Physiol. Soc., Bethesda, USA, Sect. 3, Vol. 4, Chap. 21.Google Scholar
  3. Collier, C. R. andGoldsmith, J. R. (1983) Interactions of carbon monoxide and haemoglobin at high altitude.Atmospheric Environment,17, 723–728.CrossRefGoogle Scholar
  4. Douglas, C. G., Haldane, J. S. andHaldane, J. B. S. (1912) The laws of combination of haemoglobin with carbon monoxide and oxygen.J. Physiol.,44, 275–304.Google Scholar
  5. EPA (1979) Air quality criteria for carbon monoxide. Environmental Protection Agency, report EPA-600/8-79-022, from Environmental Criteria & Assessment Office, Research Triangle Park, NC 27711, USA.Google Scholar
  6. Farhi, L. E. (1987) Ventilation-perfusion relationships.In Handbook of physiology. The respiratory system. Am. Physiol. Soc., Bethesda, USA, Sect. 3, Vol. 4, Chap. 11.Google Scholar
  7. Forster, R. E. (1964) Diffusion of gases. InHandbook of physiology. Respiration. Am. Physiol. Soc., Washington DC, USA, Sect. 3, Vol. 1, Chap. 33.Google Scholar
  8. Forster, R. E. (1987) Diffusion of gases across the alveolar membrane. InHandbook of physiology. The respiratory system. Am. Physiol. Soc., Bethesda, USA, Sect. 3, Vol. 4, Chap. 5.Google Scholar
  9. Gutierrez, G. (1986) The rate of oxygen release and its effect on capillary O2 tension: a mathematical analysis.Respirat. Physiol.,63, 79–96.CrossRefGoogle Scholar
  10. Guyton, A. C. (1981)Textbook of medical physiology. W. B. Saunders Co.Google Scholar
  11. Hempleman, S. C. andGray, A. T. (1988) Estimating steady-state DLO2 with nonlinear dissociation curves and VA/Q inequality.Respirat. Physiol.,73, 279–288.CrossRefGoogle Scholar
  12. Kelman, G. R. (1966) Digital computer subroutine for the conversion of oxygen tension into saturation.J. Appl. Physiol.,21, 1375–1376.Google Scholar
  13. McGrath, J. J. (1988) Carbon monoxide studies at high altitude.Neurosci. Biobehaviour Rev.,12, 311–314.CrossRefGoogle Scholar
  14. Olszowka, A. J. andFarhi, L. E. (1969) A system of digital computer subroutines for blood gas calculations.Respirat. Physiol.,4, 270–280.CrossRefGoogle Scholar
  15. Otis, A. B. (1964) Quantitative relationship in steady state gas exchange. InHandbook of physiology. Respiration. Am. Physiol. Soc., Washington DC, USA, Sect. 3, Vol. 1, Chap. 27.Google Scholar
  16. Peterson, J. E. andStewart, R. D. (1970) Absorption and elimination of carbon monoxide by inactive young men.Arch. Environ. Health,21, 165–170.Google Scholar
  17. Peterson, J. E. andStewart, R. D. (1975) Predicting the carboxyhaemoglobin levels resulting from carbon monoxide exposures.J. Appl. Phys.,39, 633–638.Google Scholar
  18. Piiper, J. andScheid, P. (1981) Model for capillary alveolar equilibrium with special reference to O2 uptake in hypoxia.Respirat. Physiol.,46, 193–208.CrossRefGoogle Scholar
  19. Popel, A. S. (1980) Mathematical modelling of convective and diffusive transport in the microcirculation. InMathematics of microcirculation phenomena.Gross, J. F. andPopel, A. S. (Eds.), Raven Press, New York, USA.Google Scholar
  20. Press, W. H., Flannery, B. P., Teukolsky, S. A. andVetterling, W. T. (1986)Numerical recipes. Cambridge University Press, Cambridge, UK.Google Scholar
  21. Roughton, F. J. W. andDarling, R. C. (1944) The effect of carbon monoxide on the oxyhaemoglobin dissociation curve.Am. J. Physiol.,141, 17–31.Google Scholar
  22. Roughton, F. J. W. (1945) The average time spent by the blood in human lung capillary and its relation to the rates of CO uptake and elimination in man. —Ibid.,,143, 621–633.Google Scholar
  23. Severinghaus, J. W. (1979) Simple accurate equation for human blood O2 dissociation computations.J. Appl. Physiol.,46, 599–602.Google Scholar
  24. Sharan, M., Aminataei, A. andSingh, M. P. (1987) A numerical study of the nonsteady transport of gases in the pulmonary capillaries.J. Math. Biol.,25, 433–452.MATHMathSciNetCrossRefGoogle Scholar
  25. Sharan, M. andPopel, A. S. (1988) A mathematical model for the countercurrent exchange of oxygen between paired arterioles and venules.Math. Biosci.,91, 17–34.MATHCrossRefGoogle Scholar
  26. Sharan, M., Selvakumar, S. andSingh, M. P. (1989a) A numerical model for the oxygen and carbon dioxide transport in the systemic capillaries and the surrounding tissue. InBiomechanics.Sahay, K. B. andSaxena, R. K. (Eds.), Wiley Eastern Ltd., New Delhi, India, 114–123.Google Scholar
  27. Sharan, M., Singh, M. P. andAminataei, A. (1989b) A mathematical formulation for the computation of oxygen dissociation curve in the human blood,Biosystems,22, 249–260.CrossRefGoogle Scholar
  28. Sharan, M., Selvakumar andSingh, M. P. (1990) Mathematical model for the computation of alveolar partial pressure of carbon monoxide.Int. J. Biomed. Comput.,26, 135–147.CrossRefGoogle Scholar
  29. Singh, M. P., Sharan, M. andSelvakumar, S. (1991) A mathematical model for the computation of carboxyhaemoglobin in human blood as a function of exposure time.Philos. Trans. R. Soc. Lond. B,334, 135–147.Google Scholar
  30. Tikuisis, P., Madill, H. D., Gill, B. J., Lewis, W. F., Cox, K. M. andKane, D. M. (1987a) A critical analysis of the use of the CFK equation in predicting COHb formation.Am. Ind. Hyg. Assoc. J.,48, 208–213. 1987a.Google Scholar
  31. Tikuisis P., Buick, F. andKane, D. M. (1987b) Percent carboxyhaemoglobin in resting humans exposed repeatedly to 1500 and 7500 ppm CO,J. Appl. Physiol.,63, 820–827.Google Scholar
  32. Tyuma, I., Ueda, Y., Imaizumi, K. andKosaka, H. (1981) Prediction of the carbonmoxyhaemoglobin levels during and after carbon monoxide exposures in various animal species.Jpn. J. Physiol.,31, 131–143.Google Scholar
  33. Venkatram, A. andLouch, R. (1979) Evaluation of CO air quality criteria using a COHb model.Atmospheric Environment,13, 869–872.CrossRefGoogle Scholar
  34. West, J. B. andWagner, P. D. (1977) Pulmonary gas exchange. InBioengineering aspects of lung.West, J. B. (Ed.), Vol. 3,Lung biology in health and disease. Marcel Dekker Inc., New York.Google Scholar

Copyright information

© IFMBE 1992

Authors and Affiliations

  • S. Selvakumar
    • 1
  • Maithili Sharan
    • 1
  • M. P. Singh
    • 1
  1. 1.Centre for Atmospheric SciencesIndian Institute of TechnologyNew DelhiIndia

Personalised recommendations