Advertisement

Medical and Biological Engineering and Computing

, Volume 30, Issue 5, pp 449–464 | Cite as

Review of neural network applications in medical imaging and signal processing

  • A. S. Miller
  • B. H. Blott
  • T. K. hames
Review

Abstract

The current applications of neural networks to in vivo medical imaging and signal processing are reviewed. As is evident from the literature neural networks have already been used for a wide variety of tasks within medicine. As this trend is expected to continue this review contains a description of recent studies to provide an appreciation of the problems associated with implementing neural networks for medical imaging and signal processing.

Keywords

Medical imaging Medical signal processing Neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alaux, A. andRinck, P. A. (1989) Multispectral analysis of magnetic resonance images: a comparison between supervised and unsupervised classification techniques. In Proc. Int. Symp. on Tissue Characterisation in Magnetic Resonance Imaging, European Soc. for Mag. Res. in Med. & Biol, ISBN 354051532, 19th–21st April, Wiesbaden, Germany, 165–169.Google Scholar
  2. Aleksander, I. andMorton, H. (1990)An introduction to neural computing. Chapman & Hall, New York.Google Scholar
  3. Alexandre, F., Guyot, F. andHaton, J.-P. (1990) A connectionist network with two complementary visual processing systems for X-ray image interpretation. In Proc Int. Neural Networks Conf., July, Paris, France, Part 1, 496–499.Google Scholar
  4. Angel, J. R. P., Wizinowich, P., Lloyd-Hart, M. andSandler, D. (1990) Adaptive optics for array telescopes using neural network techniques.Nature,348, 221–224.CrossRefGoogle Scholar
  5. Anthony, D. M., Hines, E. L., Taylor, D. andBarham, J. (1989) A study of data compression using neural networks and principal component analysis. Proc. IEE Colloq. Biomed. Appl. of Digital Sig. Proc., IEE Coll. Dig. 1989/144, Nov., London, UK, Paper 2.Google Scholar
  6. Anthony, D. M., Hines, E. L., Taylor, D. andBarham, J. (1990) The use of neural networks in classifying lung scintigrams. Proc of Int. Neural Network Soc. Int. Neural Networks Conf., 17th–21st June, San Diego, California, USA, Part 1, 71–74.Google Scholar
  7. Arrigo, P., Corana, A., Guiliano, F., Marconi, L., Morando, M., Ridella, S., Rolando, C. andScalia, F. (1989) Neural networks: computer simulation and biomedical applications. Proc. 2nd Italian Workshop on Parallel Architectures and Neural Networks.Caianiello E. R. (Ed.), World Scientific, Societa Italiana Reti Neuroniche, ISBN 981020146X, 26th April, Vietri Sul Mare, Salerno, Italy, 205–212.Google Scholar
  8. Baker, B., Curry, S. andBaumrind, S. (1989) A neural network method for solving pattern recognition problems in craniofacial X-ray image analysis. In Proc. 11th Ann. Int. Conf. IEEE Eng. in Med. & Biol. Soc., 9th–12th Nov., Seattle, Washington, USA, Section 5, 1646.Google Scholar
  9. Barber, D. C. (1980) The use of principal components in the quantitative analysis of gamma camera dynamic studies.Phys. in Med. & Biol.,25, 283–292.CrossRefGoogle Scholar
  10. Barschdorff, D., Ester, S., Dorsel, T. andMost, E. (1990) A new phonographic technique for congenital and acquired heart disease using neural networks (in German, abstract in English).Biomed. Technik,35, 271–279.CrossRefGoogle Scholar
  11. Beale, R. andJackson, T. (1990)Neural computing: an introduction Adam Hilger, UK.MATHGoogle Scholar
  12. Beard, N. (1990) Having a brainwave.Personal Comput. World, Feb., 186–190.Google Scholar
  13. Blada, R. A., Diller, G., Deardorff, E., Doue, J. andHsieh, P. (1977) The HP ECG analysis program. InTrends in computer processed electrocardiograms.van Bemmel, J. H. andWillems, J. L. (Eds.), North-Holland Amsterdam, 197–204.Google Scholar
  14. Bortolan, G., Degani, R. andWillems, J. L. (1990) Design of neural networks for classification of electrocardiographic signals. Proc. 12th Ann. Int. Conf. IEEE Eng. in Med. & Biol. Soc., 1st–4th Nov., Philadelphia, Pennsylvania, USA, Section 3, 1467–1468.Google Scholar
  15. Brown, D. G. (1989) Neural networks for higher order medical imaging tasks. Proc. Medinfo '89 and 6th Ann. Conf. on Medical Informatics, ISBN 0444881387, 16th–20th Oct. and 11th–15th Dec., Beijing and Singapore, 77–81.Google Scholar
  16. Carpenter, G. andGrossberg, S. (1987) A massively parallel architecture for a self-organising neural pattern recognition machine.Computer Vision Graph. & Sig. Proc.,37, 54–115.MATHCrossRefGoogle Scholar
  17. Carroll, T. O., Ved, H. andReilly, D. (1989) Neural network ECG analysis. Proc. Int. Joint Conf. on Neural Networks, (abstracts only). 18th–22nd June, Washington DC, USA, Part 2, 575.Google Scholar
  18. Cheung, J. Y., Hull, S. S. Jr, Yeo, C. S. Y. andKohli, P. (1990) Recognition of abnormal EKG signals by a neural network approach.Microcomputer Appl.,10, (2), 48–53.Google Scholar
  19. Cios, K. J., Chen, K. andLangenderfer, R. A. (1990) Use of neural networks in detecting cardiac diseases from echocardiographic images.IEEE Eng. in Med. & Biol. Mag., Sept., 58–60.Google Scholar
  20. Clark, J. W. (1991) Neural network modelling.Phys. in Med. & Biol.,36, 1259–1317.CrossRefGoogle Scholar
  21. Conrath, B. C., Daft, C. M. W. andO'Brien, W. D. Jr (1989) Applications of neural networks to ultrasound tomography. Proc. IEEE Ultrasonics Symp., Oct., Chicago, Illinois, USA, 1007–1010.Google Scholar
  22. DaPonte, J. S. andSherman, P. (1991) Classification of ultrasonic image texture by statistical discrimination analysis of neural networks.Computer Med. Imaging Graph.,15, (1), 3–9.CrossRefGoogle Scholar
  23. Dassen, W. R., Mullereers, R., Smeets, J., Den Dulk, K., Cruz, F., Brugada, P. andWellens, H. J. J. (1990) Self-learning neural networks in electrocardiography.J. Electrocardiol., (US),23, Suppl., 200–202.CrossRefGoogle Scholar
  24. Dawant, B. M., Özkan, M., Sprenkels, H. G., Aramata, H., Kawamura, K. andMargolin, R. A. (1990) A neural network approach to magnetic resonance imaging tissue characterisation. InCommunication control and signal processing. Proc. Bilkent Int. Conf. on New Trends in Comm. Control & Sig. Proc.,Arikan, E. (Ed.), 2nd–5th July, Bilkent University, Ankara, Turkey, Elsevier, Amsterdam, Part 2, 1803–1809.Google Scholar
  25. Eberhart, R. C., Dobbins, R. E. andWebber, W. R. S. (1989) CASENET: a neural network tool for EEG waveform classification. Proc. IEEE Symp. Computer Based Medical Systems, 25th–27th June, Minneapolis, Minnesota, USA, 60–68.Google Scholar
  26. Egbert, D. D., Rhodes, E. E. andGoodman, P. H. (1988) Preprocessing biomedical images for neurocomputer analysis. IEEE Int. Conf. on Neural Networks, July, San Diego, California, USA, Part 1, 561–568.Google Scholar
  27. Egbert, D. D., Kaburlasos, V. G. andGoodman, P. H. (1990) Neural network discrimination for subtle image patterns. IEEE Int. Joint Conf. on Neural Networks, 17th–21th June, San Diego, California, USA, Part 1, 517–524.Google Scholar
  28. Gage, H. D. andMiller, T. K. (1990) Mapping neural networks for the analysis of the forced expired volume signal. Proc. 3rd Ann. Symp. on Computer-Based Medical Systems, June, Chapel Hill, North Carolina, USA, 367–373.Google Scholar
  29. Gevins, A. S., Stone, R. K. andRagsdale, S. D. (1988) Differentiating the effects of three benzodiazapines on non-REM sleep EEG spectra: a neural network pattern classification analysis.Neuropsychobiol.,19, (2), 108–115.CrossRefGoogle Scholar
  30. Goldbaum, M. H., Katz, N. P. Chaudhuri, S. andNelson, M. (1989) Image understanding for automated retinal diagnosis. Proc. 13th Ann. Symp. Computer Appl. in Medical Care, Nov., Washington DC, USA, Chap. 5–8, 756–760.Google Scholar
  31. Graup, D. (1975) Functional separation of EMG signals via ARMA identification methods for prosthesis control purposes.IEEE Trans.,SMC-5, 252–259.Google Scholar
  32. Grönqvist, A. andLenz, R. (1989) Detection of blood vessels in 3-D MR-images. Proc. Int. Joint Conf. on Neural Networks, 18th–22nd June, Washington DC, USA, Part 1, 145–149.Google Scholar
  33. Gross, G. W., Boone, J. M., Greco-Hunt, V. andGreenberg, B. (1990) Neural networks in radiologic diagnosis: II. Interpretation of neonatal chest radiographs.Invest. Radiol.,25, 1017–1023.Google Scholar
  34. Grossberg, S. andMingolla, E. (1987) Neural dynamics of surface perception: boundary webs, illuminants, and shape-from-shading.Computer Vision Graph. & Image Proc.,37, 116–165.CrossRefGoogle Scholar
  35. Guyot, F., Alexandre, F., Haton, J. P. andBurnod, Y. (1989) A potentially powerful connectionist unit: the cortical column. NATO Advanced Workshop on Neuro Computing, NATO, Bonas, France, 22nd–27th Aug. 1988, 197–206.Google Scholar
  36. Hecht-Nielsen, R. (1987) Counter-propagation networks. Proc. 1st Int. Conf. on Neural Networks, June, San Diego, California, USA, Part 2, 19–32.Google Scholar
  37. Hinton, G. E. (1989) Connectinist learning procedures.Artif. Intell.,40, 185–234.CrossRefGoogle Scholar
  38. Hopfield, J. J. andTank, D. W. (1986) Computing with neural circuits: a model.Science,223, 625–633.Google Scholar
  39. Huang, J. N. andKung, S. Y. (1989) Parallel algorithms/architectures for neural networks.J. VLSI Sig. Proc.,1, 221–251.Google Scholar
  40. Iwata, A., Nagasaka, Y. andSuzumura, N. (1989) A digital Holter monitoring system with dual 3 layer neural networks. Proc. Int. Joint. Conf. on Neural Networks, 18th–22nd June, Washington DC, USA, Part 2, 69–74.Google Scholar
  41. Jolliffe, I. T. (1986)Principal component analysis. Springer-Verlag, Berlin.Google Scholar
  42. Karkhanis, P. A., Cheung, J. Y. andTeague, S. M. (1990) Using a PC based neural network to estimate the ejection fraction of a human heart.Microcomputer Appl.,9, (3), 99–107.Google Scholar
  43. Karnin, E. D. (1990) A simple procedure for pruning back-propagation trained neural networks.IEEE Trans.,NN-1, 239–242.Google Scholar
  44. Katz, W. T. andMerickel, M. B. (1989) Translation invariant aorta segmentation from magnetic resonance images. Proc. Int. Joint Conf. on Neural Networks, 18th–22nd June, Washington DC, USA, Part 1, 327–333.Google Scholar
  45. Kelly, M. F., Parker, P. A. andScott, R. N. (1990) The application of neural networks to myoelectic signal analysis: a preliminary study.IEEE Trans.,BME-37, 221–230.Google Scholar
  46. Khoshaba, T., Badie, K. andHashemi, R. M. (1990) EMG pattern classification based on back propagation neural network for prosthesis control. Proc. 12th Ann. Int. Conf. IEEE Eng. in Med. & Biol. Soc., 1st–4th Nov., Philadelphia, Pennsylvania, USA, Section 3, 1474–1475.Google Scholar
  47. Kippenhan, J. S. andNagel, J. H. (1990) Diagnosis and modelling of Alzheimer's disease through cural network analysis of PET studies. Proc. 12th Ann. Conf. IEEE Eng. in Med. & Biol. Soc., 1st–4th Nov., Philadelphia, Pennsylvania, USA, Section 3, 1449–1450.Google Scholar
  48. Kohonen, T. (1990) The self-organizing map.IEEE Proc.,78, 1464–1480.CrossRefGoogle Scholar
  49. Lee, S. C. (1989) Using translation-invariant neural network to diagnose heart arrhythmia. Proc. 11th Ann. Int. Conf. IEEE Eng. in Med. & Biol. Soc., 9th–12th Nov., Seattle, Washington, USA, Section 6, 2025–2026.Google Scholar
  50. Lehar, S. M., Worth, A. J. andKennedy, D. N. (1990) Application of the boundary contour/feature system to magnetic resonance brain scan imagery. Proc. Int. Joint Conf. on Neural Networks, 17th–21st June, San Diego, California, USA, Part 1, 435–440.Google Scholar
  51. Linnenbank, A. C., SippensGroenewegen, A. andGrimbergen, C. A. (1990) Artificial neural networks applied in multiple lead electrocardiography rapid quantitative classification of ventricular tachycardia QRS internal patterns. Proc. 12th Ann. Int. Conf. IEEE Eng. in Med. & Biol., 1st–4th Nov., Philadelphia, Pennsylvania, USA, Section 3, 1461–1462.Google Scholar
  52. Miller, A. S., Blott, B. H. andHames, T. K. (1992) Neural networks for electrical impedance tomography image characterisation.Clin. Phys. Physiol. Meas.,13, Suppl. A, 119–123.Google Scholar
  53. Miller, L. F., Smith, G. T., Wu, Y. andUhrig, R. E. (1990) Evaluation of neural networks for parameter identification from positron emission tomography scans.Trans. Am. Nuclear Soc.,62, 5–6.Google Scholar
  54. Minsky, M. L. andPapert, S. A. (1988)Perceptrons: an introduction to computational geometry, 2nd edn. MIT Press, Cambridge, Massachusetts, USA.MATHGoogle Scholar
  55. Navabi, M. J., Watt, R. C., Mylrea, K. C. andHameroff, S. R. (1990) Classification of CO2 waveforms using artificial neural networks. Proc. 12th Ann. Conf. IEEE Eng. in Med. & Biol. Soc., 1st–4th Nov., Philadelphia, Pennsylvania, USA, Section 3, 1455–1456.Google Scholar
  56. Nekovei, R. andSun, Y. (1990) An adaptive algorithm for coronary artery identification in cineangiograms. Proc. 12th Ann. Int. Conf. of the IEEE Eng. in Med. & Biol. Soc., 1st–4th Nov., Philadelphia, Pennsylvania, USA, Section 3, 1459–1460.Google Scholar
  57. Nikoonahad, M. andLiu, D. C. (1990) Medical ultrasound imaging using neural networks.Electron. Lett.,26, 545–546.Google Scholar
  58. Özkan, M., Sprenkles, H. G. andDawant, B. M. (1990) Multispectral magnetic resonance image segmentation using neural networks. Proc. Int. Joint Conf. on Neural Networks, 17th–21st June, San Diego, California, USA Part 1, 429–434.Google Scholar
  59. Paul, J. andvon Goldammer, E. (1990) Neural net applications in medicine. InSymbols versus neurons.Stender, J. andAddis, T. (Eds.), IOS Press, Amsterdam, 215–231.Google Scholar
  60. Pietka, E. (1989) Neural nets for ECG classification. Proc. 11th Ann. Int. Conf. IEEE Eng. in Med. & Biol., Soc., 9th–12th Nov., Seattle, Washington, USA, Section 6, 2021–2022.Google Scholar
  61. Pinho, A. J. andAlmeida, L. B. (1991) Biomedical image compression based on artificial neural networks. Proc. 1st European Conf. on Biomed. Eng., 17th–20th Feb., Nice, France, 90–91.Google Scholar
  62. Principe, J. C., Chang, T. G. Gala, S. K. andTome, A. P. (1989a) Information processing models for automatic sleep scoring. Proc. 11th Ann. Int. Conf. IEEE Eng. in Med. & Biol. Soc., 9th–12th Nov., Seattle, Washington, USA Section 6, 1804–1805.Google Scholar
  63. Principe, J. C., Gala, S. andChang, T. (1989b) Sleep staging based on the theory of evidence.IEEE Trans.,BME-36, 503–509.Google Scholar
  64. Raff, U. andNewman, F. D. (1990) Lesion detection in radiologic images using an autoassociative paradigm: preliminary results.Med. Phys. (US),17, 926–928.CrossRefGoogle Scholar
  65. Rumelhart, D. E., Hinton, G. E. andMcClelland, J. L. (1986) A general framework for parallel distributed processing. InParallel distributed processing: explorations in the microstructure of cognition Volume 1 Foundations.Rumelhart, D. E., McClelland, J. L. and The PDP Research Group (Eds.), MIT Press, Cambridge, Massachusetts, USA, 45–76.Google Scholar
  66. Sander, D. G., Barrett, T. K. andPalmer, D. A. (1991) Use of a neural network to control an adaptive optics system for an astronomical telescope.Nature,351, 300–302.CrossRefGoogle Scholar
  67. Schellenberg, J. D., Naylor, W. C. andClarke, L. P. (1990) Application of artificial neural networks for tissue classification from multispectral magnetic resonance images of the head. Proc. 3rd Ann. IEEE Symp. on Computer-Based Medical Systems, June, Chapel Hill, North Carolina, USA, 350–357.Google Scholar
  68. Schertz, L. D., Vannier, M. W., Gado, M. H. andButterfield, R. L. (1985) Statistical assessment of MR image classification techniques. In Proc. 7th Ann. Conf. IEEE Eng. in Med. & Biol. Soc., Sept., Chicago, Illinois, USA, 585–592.Google Scholar
  69. Schizas, C. N., Pattichis, C. S., Schofield, I. S., Fawcett, P. R. andMiddleton, L. T. (1989) Artificial neural net algorithms in classifying electromyographic signals. Proc. 1st IEE Conf. on Artificial Neural Networks, IEE Conf. Publ. 1989/313, 16th–18th Oct., London, UK, 134–138.Google Scholar
  70. Sebald, A. V. (1989) Use of neural networks for detection of artifacts in arterial pressure waveforms. Proc. 11th Ann. Int. Conf. IEEE Eng. in Med. & Biol. Soc., 9th–12th Nov., Seattle, Washington, USA, Section 6, 2034–2035.Google Scholar
  71. Silverman, R. H. andNoetzel, A. S. (1990) Image processing and pattern recognition in ultrasonograms by backpropagation.Neural Networks,3, 593–603.CrossRefGoogle Scholar
  72. Strand, E. M. andJones, W. T. (1990) A neural network for tracking the prevailing heart rate of the electrocardiogram. Proc. 3rd Ann. Symp. on Computer-Based Medical Systems, June, Chapel Hill, North Carolina USA, 358–365.Google Scholar
  73. Stubbs, D. F. (1990) Multiple neural network approaches to clinical expert systems.SPIE Appl. of Artif. Neural Networks,1294, 433–441.Google Scholar
  74. Toulson, D. L. andBoyce, J. F. (1991) Segmentation of MR images using neural nets. IEE Colloq. on Image Proc. in Med., IEE Coll. Dig. 1991/84, 19th April, London, UK, Paper 5.Google Scholar
  75. Tsai, Y. S., Hung, B. N. andTung, S. F. (1990) An experiment on ECG classification using back-propagation neural network. Proc. 12th Ann. Int. Conf. IEEE Eng. in Med. of Biol. Soc., 1st–4th Nov., Philadelphia, Pennsylvania, USA, Section 3, 1463–1464.Google Scholar
  76. Wasserman, P. D. (1989)Neural computing theory and practice. Van Nostrand Reinhold, New York.Google Scholar
  77. Widrow, B. andWinter, R. (1988) Neural nests for adaptive filtering and adaptive pattern recognition.IEEE Computer, March, 25–39.Google Scholar
  78. Widrow, S. andLehr, M. A. (1990) 30 years of adaptive neural networks: perceptron, madaline, and backpropagation.Proc. IEEE,78, 1415–1441.CrossRefGoogle Scholar
  79. Xue, Q., Hu, Y. H. andTompkins, W. J. (1989) A neural network weight pattern study for ECG pattern recognition. Proc. 11th Ann. Int. Conf. IEEE Eng. in Med. & Biol. Soc., 9th–12th Nov., Seattle, Washington, USA, Section 6, 2023–2024.Google Scholar
  80. Xue, Q., Hu, Y. H. andTompkins, W. J. (1990) Training of ECG signals in neural network pattern recognition. Proc. 12th Ann. Int. Conf. IEEE Eng. Med. & Biol. Soc., 1st–4th Nov., Philadelphia, Pennsylvania, USA, Section 3, 1465–1466.Google Scholar
  81. Yeap, T. H., Johnson, F. andRachniowski, M. (1990) ECG beat classification by a neural network. Proc. 12th Ann. Int. Conf. IEEE Eng. in Med. & Biol. Soc., 1st–4th Nov., Philadelphia, Pennsylvania, USA, Section 3, 1457–1458.Google Scholar

Copyright information

© IFMBE 1992

Authors and Affiliations

  • A. S. Miller
    • 1
  • B. H. Blott
    • 1
  • T. K. hames
    • 2
  1. 1.Department of PhysicsUniversity of SouthamptonSouthamptonUK
  2. 2.Department of Medical Physics & BioengineeringSouthend General HospitalWestcliff-on-SeeUK

Personalised recommendations