Il Nuovo Cimento D

, Volume 18, Issue 9, pp 1087–1097 | Cite as

Modular invariant partition function of the Hubbard model

  • Zhe Chang
Article
  • 24 Downloads

Summary

By making use of the Abelian bosonization procedure, we obtain a Coulomb-gas picture of the continuum limit of the one-dimensional Hubbard model. It is shown clearly that the semi-direct product of two Virasoro algebras (c=1) denotes symmetry of excitations of the Hubbard model. A systematic study of modular invariant partition function for the Hubbard model is presented. Correlation functions are calculated explicitly and the result is in good agreement with those of numerical simulations and Tomonaga-Luttinger model.

PACS 71.27

Strongly correlated electron systems heavy fermions 

PACS 05.30

Quantum statistical mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Belavin A. A., Polyakov A. M. andZamolodchikov A. B.,Nucl. Phys. B,241 (1984) 333.MATHMathSciNetCrossRefADSGoogle Scholar
  2. [2]
    See for a collection of reprints,Conformal Invariance and Applications in Statistical Mechanics, edited byC. Itzykson, H. Saleur andJ.-B. Zuber (World Scientific, Singapore) 1988.Google Scholar
  3. [3]
    Hubbard J.,Proc. R. Soc. London, Ser. A,276 (1963) 238.ADSCrossRefGoogle Scholar
  4. [4]
    Anderson P. W.,Science,235 (1987) 1196.ADSGoogle Scholar
  5. [5]
    Lieb E. andWu F. Y.,Phys. Rev. Lett.,20 (1968) 1445.CrossRefADSGoogle Scholar
  6. [6]
    Ogata M. andShiba H.,Phys. Rev. B,41 (1990) 2326.CrossRefADSGoogle Scholar
  7. [7]
    Parola A. andSorella S.,Phys. Rev. Lett.,64 (1990) 1831.MATHMathSciNetCrossRefADSGoogle Scholar
  8. [8]
    Schulz H. J.,Phys. Rev. Lett.,64 (1990) 2831.CrossRefADSGoogle Scholar
  9. [9]
    Tomonaga S.,Prog. Theor. Phys.,5 (1950) 349;Luttinger J. M.,J. Math. Phys.,15 (1963). 609;Haldane F. D. M.,Phys. Rev. Lett.,45 (1980) 1358;47 (1980) 1840.Google Scholar
  10. [10]
    Kawakami N. andYang S. K.,Phys. Lett. A.,148 (1990) 359;Frahm H. andKorepin V. E.,Phys. Rev. B,42 (1990) 10553.CrossRefADSGoogle Scholar
  11. [11]
    Kadanoff L. P. andBrown A. C.,Ann. Phys. (N.Y.),121 (1979) 318.CrossRefADSGoogle Scholar
  12. [12]
    Luther A. andPeshel I.,Phys. Rev. B,9 (1974) 2911;Luther A. andEmery V. J.,Phys. Rev. Lett.,33 (1974) 589;Schotte K. D. andScotte U.,Phys. Rev.,182 (1969) 479;Lieb E. andMattis D.,J. Math. Phys.,6 (1965) 304;Coleman S.,Phys. Rev. D,11 (1975) 2088.CrossRefADSGoogle Scholar
  13. [13]
    Sólyom J.,Adv. Phys.,28 (1979) 201;Emery V. J., inHighly Conducting One-Dimensional Solids, edited byJ. Devreese, R. Evrad andV. van Doren (Plenum, New York, N.Y.) 1979;Fukuyama H. andTakayama M., inElectronic Properties of Inorganic Quasi-One-Dimensional Compounds, edited byP. Monceau (D. Reidel Publishing Company) 1985.CrossRefADSGoogle Scholar
  14. [14]
    For more details of the renormalization group treatment see, for example,T. Giamarchi andH. J. Schulz,J. Phys. (Paris),49 (1989) 819.Google Scholar
  15. [15]
    Kadanoff L. P.,J. Phys. A,11 (1978) 1399.MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    Nienhuis B.,J. Stat. Phys.,34 (1984) 731.MATHMathSciNetCrossRefADSGoogle Scholar
  17. [17]
    Cardy J. L.,J. Phys. A,17 (1984) L385.MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    di Francesco P., Saleur H. andZuber J. B.,J. Stat. Phys.,49 (1987) 57;Yang S. K.,Nucl. Phys. B,285 [FS19] (1987) 183.MATHCrossRefADSGoogle Scholar
  19. [19]
    Bogoliubov N. M., Izergin A. G. andKorepin V. E.,Nucl. Phys. B,275 [FS17] (1986) 687.MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1996

Authors and Affiliations

  • Zhe Chang
    • 1
    • 2
  1. 1.International Centre for Theoretical PhysicsTriesteItaly
  2. 2.Sezione di TriesteINFNTriesteItaly

Personalised recommendations