Applied Mathematics and Mechanics

, Volume 18, Issue 4, pp 341–348 | Cite as

Bounds of the expansion coefficients of composites reinforced by spherically isotropic particles

  • He Linghui
  • Liu Renhuai
Article

Abstract

The present paper is devoted to the study of expansional behaviours of a composite reinforced by spherically isotropic particles. An exact relation is derived between the effective expansion coefficient and bulk modulus of the composite by using the concept of uniform fields in the matrix which is proposed here. Through obtaining the Paul-type bounds of the bulk modulus by using the extreme principle of energy, bounds of the effective expansion coefficient are also derivded

Key words

composite expańsional behaviour bounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Z. Hashin and S. Shtrikmann, A variational approach to the theory of elastic behaviour of multiphase materials,J. Mech. Phys. Solids,11 (1963), 127–140.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Z. Hashin and S. Shtrikmann, On some variational principles in anisotropic and nonhomogeneous elasticity,J. Mech. Phys. Solids,10 (1962), 335–342.MathSciNetCrossRefGoogle Scholar
  3. [3]
    L. J. Walpole, On bounds for the overall elastic moduli of inhomogeneous systems—I,J. Mech. Phys. Solids,14 (1966), 151–162.MATHCrossRefGoogle Scholar
  4. [4]
    L. J. Walpole, On bounds for the overall elastic moduli of inhomogeneous systems—II,J. Mech. Phys. Solids,14 (1966), 289–301.CrossRefGoogle Scholar
  5. [5]
    J. L. Willis, Bounds and self-consistent estimates for the overall properties of anisotropic composites,J. Mech. Phys. Solids,25 (1977), 185–202.MATHCrossRefGoogle Scholar
  6. [6]
    V. M. Levin, Thermal expansion coefficients of heterogeneous materials,Mekh. Tverdogo Tela,2 (1967), 88–94.Google Scholar
  7. [7]
    B. W. Rosen and Z. Hashin, Effective thermal expansion coefficients and specific heats of composite materials,Int. J. Eng. Sci.,8 (1970), 157–173.CrossRefGoogle Scholar
  8. [8]
    J. R. Dryden, Elastic constants of spherulitic polymers,J. Mech. Phys. Solids,36 (1988). 377–498.Google Scholar
  9. [9]
    T. Chen, Thermoelastic properties and conductivity of composites reinforced by spherically anisotropic particles,Mech. Mater.,14 (1993), 257–268.CrossRefGoogle Scholar
  10. [10]
    G. J. Dvorak, Thermal expansion of elastic-plastic composite materials,J. Appl. Mech.,53 (1986), 737–743.MATHCrossRefGoogle Scholar
  11. [11]
    G. J. Dvorak, On uniform fields in heterogeneous madia,Proc. R. Soc. Lond.,A431 (1990), 89–110.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    B. Paul, Prediction of elastic constants of multiphase materials,Trans. of the ASME,218 (1960), 36–41.Google Scholar
  13. [13]
    W. Voigt, Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper,Wied. Ann.,38 (1989), 573–587.MathSciNetGoogle Scholar
  14. [14]
    A. Reuss, Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle,ZAMM,9 (1929), 49–58.MATHGoogle Scholar
  15. [15]
    Z. Hashin, The elastic moduli of heterogeneous materials,J. Appl. Mech.,29 (1962), 143–150.MATHMathSciNetGoogle Scholar

Copyright information

© Editorial Committee of Applied Mathematics and Mechanics 1980

Authors and Affiliations

  • He Linghui
    • 1
  • Liu Renhuai
    • 2
  1. 1.University of Science and Technology of ChinaHefeiP. R. China
  2. 2.Jinan UniversityGuangzhouP. R. China

Personalised recommendations