Skip to main content
Log in

New hexagonal structures for two-dimensional photonic band gap materials

  • Published:
Il Nuovo Cimento D

Summary

Recently, periodic dielectric structures have been proposed to inhibit spontaneous emission in semiconductors. From this suggestion, the new concepts of photonic band gap and photonic crystal have been developed. Zero-threshold lasers, wave guides and polarizers are promising applications. A new class of twodimensional periodic structures with hexagonal symmetry is investigated in order to obtain photonic band gap materials. This set has the hexagonal symmetry and contains, in particular, several structures previously discussed. The photonic band gap structure is related to the basic properties of the materials and some features of the opening of the gaps are explained. By varying the crystal pattern, we show how band gaps common toE andH polarizations appear for a new design of two-dimensional periodic dielectric structures. The dependence of the widths of these gaps on the filling patterns is studied and potential application for the creation of photonic crystals in the optical domain is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yablonovitch E.,Phys. Rev. Lett.,58 (1987) 2059.

    Article  ADS  Google Scholar 

  2. John S.,Phys. Rev. Lett.,58 (1987) 2486.

    Article  ADS  Google Scholar 

  3. For recent reviews, see the articles inPhotonic Bandgaps and Localization, edited byC. Soukoulis (Plenum, New York, N.Y.) 1993 and in the special issue ofJ. Opt. Soc. Am. B,10 (1993) edited byC. M. Bowden, J. P. Dowling andH. O. Everitt.

    Google Scholar 

  4. Villeneuve P. R. andPiché M.,Prog. Quantum Electron.,18 (1994) 153.

    Article  Google Scholar 

  5. Gourley P. L., Wendt J. R., Vawter G. A., Brennan T. M. andHammons B. E.,Appl. Phys. Lett.,64 (1994) 687.

    Article  ADS  Google Scholar 

  6. Gérard J. M., Izraël A., Marzin J. Y., Padjen R. andLandan F. R.,Solid-State Electron.,37 (1994) 1341.

    Article  Google Scholar 

  7. Inoue K., Wada M., Sakoda K., Yamanaka A., Hayashi M. andHus J. W.,Jpn. J. Appl. Phys.,33 (1994) L1463.

    Article  Google Scholar 

  8. Plihal M. andMaradudin A. A.,Phys. Rev. B,44 (1991) 8565.

    Article  ADS  Google Scholar 

  9. Meade R. D., Brommer K. D., Rappe A. M. andJoannopoulos J. D.,Appl. Phys. Lett.,61 (1992) 495.

    Article  ADS  Google Scholar 

  10. Villeneuve P. R. andPiché M.,Phys. Rev. B,46 (1992) 4969.

    Article  ADS  Google Scholar 

  11. Padjen R., Gérard J. M. andMarzin J. Y.,J. Mod. Opt.,41 (1994) 295.

    ADS  Google Scholar 

  12. Cassagne D., Jouanin C. andBertho D.,Phys. Rev. B,52 (1995) R2217.

    Article  ADS  Google Scholar 

  13. Bassani F. andPastori-Parravicini G., inElectronic States and Optical Transitions in Solids (Pergamon Press, Oxford) 1975.

    Google Scholar 

  14. Cassagne D., Jouanin C. andBertho D., unpublished.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassagne, D., Jouanin, C. & Bertho, D. New hexagonal structures for two-dimensional photonic band gap materials. Il Nuovo Cimento D 17, 1401–1405 (1995). https://doi.org/10.1007/BF02457217

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02457217

PACS 41.20.Jb

PACS 71.25.Cx

PACS 78.90

PACS 84.90

PACS 01.30.Cc

Navigation