Il Nuovo Cimento D

, Volume 13, Issue 12, pp 1513–1525 | Cite as

General function with scaling properties and the time-temperature superposition

  • F. Povolo
  • M. Fontelos
Article

Summary

The most general function with scaling properties, that is, with superposition properties along a given direction, is deduced from the general solution of the partial differential equation that describes the scaling conditions. The time-temperature superposition, which means a scaling behaviour with a translation path parallel to the abscissa, is discussed within the general formalism presented and some examples are considered in detail.

PACS 46.20

Continuum mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. W. Hart:Acta Metall.,18, 599 (1970).CrossRefGoogle Scholar
  2. [2]
    E. W. Hart, C. Y. Li, H. Yamada andG. L. Wire: inConstitutive Equations in Plasticity, edited byA. Argon (MIT Press, 1975), p. 149.Google Scholar
  3. [3]
    F. Povolo andG. H. Rubiolo:J. Mater. Sci.,18, 821 (1983).CrossRefGoogle Scholar
  4. [4]
    F. Povolo:J. Mater. Sci. Lett.,4, 619 (1985).CrossRefGoogle Scholar
  5. [5]
    F. Povolo andM. Fontelos:J. Mater. Sci.,22, 1530 (1987).CrossRefGoogle Scholar
  6. [6]
    F. Povolo andM. Fontelos:Res. Mechanica,22, 185 (1987).Google Scholar
  7. [7]
    F. Povolo andA. J. Marzocca:J. Mater. Sci.,18, 1426 (1983).CrossRefGoogle Scholar
  8. [8]
    F. Povolo andA. J. Marzocca:J. Nucl. Mater.,118, 224 (1983).CrossRefGoogle Scholar
  9. [9]
    F. Povolo, A. J. Marzocca andG. H. Rubiolo:Res. Mechanica,12, 27 (1984).Google Scholar
  10. [10]
    F. Povolo andJ. C. Capitani:J. Mater. Sci.,19, 2969 (1984).CrossRefGoogle Scholar
  11. [11]
    F. Povolo andR. Tinivella:J. Mater. Sci.,19, 1851 (1984).CrossRefGoogle Scholar
  12. [12]
    F. Povolo: inStrength of Metals and Alloys, edited byH. J. McQueen, J.-P. Bailon, J. I. Dickson, J. J. Jonas andM. G. Akben, Vol.1, (Pergamon Press, Toronto, 1985). p. 613.Google Scholar
  13. [13]
    J. D. Ferry:Viscoelastic Properties of Polymers, (John Wiley, New York, N.Y., 1980).Google Scholar
  14. [14]
    M. L. Williams, R. L. Landel andJ. D. Ferry:J. Am. Chem. Soc.,77, 3701 (1955).CrossRefGoogle Scholar
  15. [15]
    F. Povolo andE. Hermida:J. Mater. Sci. (in press).Google Scholar
  16. [16]
    F. Povolo andM. Fontelos: submitted toJ. Chem. Educ.Google Scholar
  17. [17]
    Ian N. Sneddon:Elements of Partial Differential Equations (McGraw-Hill, New York, N.Y., 1957).Google Scholar
  18. [18]
    E. T. Whittaker andG. N. Watson:Modern Analysis (Cambridge University Press, Cambridge, 1927).Google Scholar
  19. [19]
    F. Bueche:Physical Properties of Polymers (Interscience, New York, N.Y., 1962).Google Scholar

Copyright information

© Società Italiana di Fisica 1991

Authors and Affiliations

  • F. Povolo
    • 1
  • M. Fontelos
    • 2
  1. 1.Départment de Recherche Fondamentale Service de Physique/MPCentre d'Etudes Nucléaires de GrenobleGrenoble CédexFrance
  2. 2.Dipartimento di ChimicaPolitecnico di MilanoMilanoItalia

Personalised recommendations