Il Nuovo Cimento D

, Volume 13, Issue 8, pp 1013–1019 | Cite as

Two analytic approximations for thed+1 ising model

  • C. Di Bartolo
  • L. Leal
Article
  • 11 Downloads

Summary

The Hamiltonian Ising model ind+1 dimensions is studied by means of two new approximation methods which exploit the geometry of the model. Explicit results for the critical temperature and observables of the theory are obtained.

PACS 64.60

General studies of phase transitions 

PACS 05.50

Lattice theory and statistics Ising problems 

PACS 11.10.Ef

Lagrangian and Hamiltonian approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Gambini andA. Trias:Phys. Rev. Lett.,53, 2359 (1984).ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    R. Gambini, L. Leal andA. Trias:Phys. Rev. D,39, 3127 (1989).ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    C. Di Bartolo, R. Gambini andA. Trias:Phys. Rev. D,39, 3136 (1989).ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    F. Wegner:J. Math. Phys.,12, 2259 (1971).ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    P. Pfeuty:Ann. Phys. (N.Y.),57, 79 (1970).ADSCrossRefGoogle Scholar
  6. [6]
    P. Pfeuty andR. J. Elliott:J. Phys. C,4, 2370 (1971).ADSCrossRefGoogle Scholar
  7. [7]
    L. G. Marland:J. Phys. A,14, 2047 (1981).ADSCrossRefGoogle Scholar
  8. [8]
    E. Fradkin andL. Susskind:Phys. Rev. D,17, 2637 (1978).ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    J. Kogut:Rev. Mod. Phys.,51, 659 (1979).ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A. C. Irving andA. Thomas:Nucl. Phys. B,200 (FS4), 424 (1982).ADSCrossRefGoogle Scholar
  11. [11]
    C. J. Hamer:J. Phys. A,16, 1257 (1983).ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    C. J. Hamer andA. J. Guttmann:J. Phys. A,22, 3653 (1989).ADSCrossRefGoogle Scholar
  13. [13]
    R. Abe:Prog. Theor. Phys.,47, 62 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1991

Authors and Affiliations

  • C. Di Bartolo
    • 1
  • L. Leal
    • 2
  1. 1.Departmento de FísicaUniversidad Simón BolívarCaracasVenezuela
  2. 2.Departamento de Física Aplicada, Facultad de IngenieríaUniversidad Central de VenezuelaCaracasVenezuela

Personalised recommendations