Advertisement

Il Nuovo Cimento D

, Volume 13, Issue 8, pp 987–1006 | Cite as

Finite-amplitude electrostatic waves im magneto-active plasmas

  • L. Martina
Article

Summary

Weakly nonlinear dispersive longitudinal waves in an infinite homogeneous collisionless plasma in the presence of an external constant and uniform magnetic field are considered. Under specific physical assumptions and for an arbitrary three-dimensional envelope modulation of a plane wave, a purely differential system is derived. Taking into account the effect of wave-wave and wave-particle interaction, the evolution of the modulation is described by a modified nonlinear Schrödinger equation, coupled to the space perturbation charge densities. The generation of a static mode is described. As a particular case the electron waves are discussed and some special solutions, resorting to the theory of the perturbed solitions.

PACS 52.35.Mw

Nonlinear waves and nonlinear wave propagation (including parametric effects, mode coupling, ponderomotive effects, etc.) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Ablowitz andA. Segur:Solitons and Inverse Scattering Transform (SIAM, Philadelphia, Penn., 1981).CrossRefMATHGoogle Scholar
  2. [2]
    R. K. Dodd, J. Eilbeck, J. Gibbon andH. Morris:Solitons and Nonlinear Wave Equations (Academic Press, London, 1982).MATHGoogle Scholar
  3. [3]
    S. Novikov, S. V. Manakov, L. P. Pitaevskii andV. E. Zakharov:Theory of Solitons (Consultants Bureau, New York, N.Y., 1984).MATHGoogle Scholar
  4. [4]
    R. C. Davidson:Methods in Nonlinear Plasma Theory (Academic Press, New York, N.Y., 1972).Google Scholar
  5. [5]
    V. I. Karpman:Nonlinear Waves in Dispersive Media (Pergamon Press, Oxford, 1975).Google Scholar
  6. [6]
    A. G. Sitenko:Fluctuations and Nonlinear Wave Interactions in Plasmas (Pergamon Press, Oxford, 1982).MATHGoogle Scholar
  7. [7]
    T. H. Stix:The Theory of Plasma Waves (Mc Graw-Hill, New York, N.Y., 1962).MATHGoogle Scholar
  8. [8]
    H. Pecseli:IEEE Trans. Plasma Sci.,13, 53 (1985).ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    A. Sen:Nonlinear Effects in Wave Propagation in Modern Plasma Physics (IAEA, Vienna, 1981).Google Scholar
  10. [10]
    T. Taniuti andN. Yajima:J. Math. Phys.,10, 1969 (1969).MathSciNetCrossRefGoogle Scholar
  11. [11]
    T. Taniuti andN. Yajima:J. Math Phys.,10, 1010 (1969).MathSciNetCrossRefGoogle Scholar
  12. [12]
    J. G. Turner andJ. J. M. Boyd:J. Plasma Phys.,22, 121 (1979).ADSCrossRefGoogle Scholar
  13. [13]
    Y. Choquet-Bruhat:Distribution (Masson, Paris, 1973).Google Scholar
  14. [14]
    A. Davey andK. Stewartson:Proc. R. Soc. London, Ser. A,338, 101 (1974).ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Boiti, J. Leon, L. Martina andF. Pempinelli:Exponentially localized solitons in 2+1dimensions, inNonlinear Evolution Equations and Dynamical Systems, edited byS. Carillo andO. Ragnisco (Springer-Verlag, Berlin, Heidelberg, 1990).Google Scholar
  16. [16]
    W. A. Strauss:Contemporary Developments in Continuum Mechanics and Partial Differential Equations, edited byG. M. de la Penha andL. A. J. Medeiros (North Holland, Amsterdan, 1978).Google Scholar
  17. [17]
    V. Zakharov:Sov. Phys. JETP,35, 908 (1972).ADSGoogle Scholar
  18. [18]
    J. J. Ramussen andK. Rypdal:Phys. Scr.,33, 481 (1986).ADSCrossRefGoogle Scholar
  19. [19]
    V. I. Karpman:Phys. Scr.,20, 462 (1979).ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    Y. H. Ichikawa andT. Taniuti:J. Phys. Soc. Jpn.,34, 513 (1973).ADSCrossRefGoogle Scholar
  21. [21]
    K. Rypdal andJ. J. Rasmussen:Phys. Scr.,33, 498 (1986).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1991

Authors and Affiliations

  • L. Martina
    • 1
  1. 1.Centre de Recherches MathématiquesUniversité de MontréalMontréal

Personalised recommendations