Two-photon ionization by perturbation theory of a simple molecular model
- 24 Downloads
- 3 Citations
Summary
The two-photon ionization probability of a simple model of diatomic molecule has been exactly evaluated under the assumption that a perturbative treatment is valid. The model consists of a simple electron in one-dimensional motion in the field of two fixed Dirac delta wells. The exact results are compared with a number of approximations arising from simplifications introduced at the level of final state and/or the intermediate states involved in the evaluation of the relevant ionization amplitude.
PACS. 33.80
Molecular photon processesRiassunto
È stata calcolata la probabilità di ionizzazione per assorbimento di due fotoni in un semplice modello di molecola biatomica omonucleare in condizioni nelle quali si può supporre valida una trattazione perturbativa. Il modello considerato consiste di un elettrone vincolato a muoversi di moto monodimensionale nel campo di due buche attrattive tipo delta di Dirac. Risultati esatti per il modello sono confrontati con approssimazioni ottenute semplificando la struttura dello stato finale dell'elettrone ionizzato e/o quella degli stati intermedi necessari per il calcolo dell'ampiezza di ionizzazione a due fotoni.
Резюме
В рамках применимости теории возмущений оценивается вероятность двух-фотонной ионизации в простой модели двухатомной молекулы. Модель состоит из электрона, участвующего в одно-мерном движении в поле двух фиксированных потенциальных ям в виде дельта-функций Дирака. Точные результаты сравниваются с рядом приближений, получающихся из упрощений, вводимых на уровне конечного состояния и/или промежуточных состояний, необходимых для вычисления соответствующей амплитуды двух-фотонной ионизации.
Preview
Unable to display preview. Download preview PDF.
References
- (1).J. S. Bakos:Adv. Electron. Electron Phys.,36, 57 (1974).Google Scholar
- (2).N. B. Delone:Sov. Phys. Usp.,18, 169 (1975).CrossRefADSGoogle Scholar
- (3).P. Lambropoulos:Adv. At. Mol. Phys.,12, 87 (1976).CrossRefGoogle Scholar
- (4).J. E. Bayfield:Phys. Rep.,51, 317 (1979).CrossRefADSGoogle Scholar
- (5).F. Ehlotzky:Can. J. Phys.,59, 1200 (1981).zbMATHMathSciNetGoogle Scholar
- (6).
- (7).
- (8).
- (9).
- (10).A. A. Frost:J. Chem. Phys.,22, 1613 (1954);25, 1150 (1956).ADSGoogle Scholar
- (11).E. R. Lippincott:J. Chem. Phys.,26, 1678 (1957).CrossRefADSGoogle Scholar
- (12).J. T. Vanderslice, E. A. Mason andE. R. Lippincott:J. Chem. Phys.,30, 129 (1959).CrossRefADSGoogle Scholar
- (13).
- (14).C. Guidotti, F. Biondi, N. Durante andG. P. Arrighini:Nuovo Cimento D,2, 1097 (1983).ADSGoogle Scholar
- (15).G. P. Arrighini, N. Durante andC. Guidotti:Collisions and Half-Collisions with Lasers, edited byN. K. Rahman andC. Guidotti (Chur, London, New York, N.Y., 1984).Google Scholar
- (16).
- (17).A. Dalgarno andJ. T. Lewis:Proc. R. Soc. London, Ser. A,233, 70 (1955).zbMATHMathSciNetADSCrossRefGoogle Scholar
- (18).
- (19).
- (20).
- (21).
- (22).H. J. Lipkin:Quantum Mechanics, New Approaches to Selected Topics (Amsterdam, 1973).Google Scholar
- (23).E. N. Economou:Green's Functions in Quantum Physics (Berlin, Heidelberg, New York, N.Y., 1979).Google Scholar
- (24).S. Geltman:Phys. Lett.,4, 168 (1963).CrossRefADSGoogle Scholar
- (25).
- (26).S. Klarsfeld:Lett. Nuovo Cimento,3, 395 (1970).CrossRefGoogle Scholar
- (27).E. Karule:J. Phys. B,11, 441 (1978).CrossRefADSGoogle Scholar
- (28).
- (29).
- (30).
- (31).J. W. Cooper:Phys. Rev.,128, 681 (1962).CrossRefADSGoogle Scholar
- (32).J. Berkowitz:Photoabsorption, Photoionization and Photoelectron Spectroscopy (London, New York, N.Y., 1979).Google Scholar
- (33).K. Gottfried:Quantum Mechanics, Vol.1 (London, Amsterdam, Don Mills, Sydney, Tokyo, 1996).Google Scholar