Skip to main content
Log in

Magnetoelastic coupling coefficient and anisotropy induced by magnetic annealing in strips of noncrystalline material

  • Published:
Il Nuovo Cimento D

Summary

The anisotropy induced by magnetic annealing in a transversal field is correlated with the Young modulus, the longitudinal magnetostriction and the magnetoelastic coupling coefficient. Subsequently it is shown that the value of the anisotropy deriving from directional short-range ordering,k DSRO, can be calculated in an original manner by means of the mentioned parameters. Thisk DSRO evaluation is in increasing agreement with its directly measured value, when the magnetic-annealing effects approach saturation. The magnetic heat treatment influences can be described by a small rise of the internal stress, in comparison with conventional annealing, and a large increase of longitudinal magnetostriction.

Riassunto

L'anisotropia indotta da trattamento termico in campo magnetico trasversale si correla con il modulo di elasticità lineare, la magnetostrizione longitudinale ed il coefficiente di accoppiamento magnetoelastico, in provini nastriformi di metallo amorfo. Successivamente si dimostra che l'anisotropia magnetica prodotta per ordine direzionale a corto raggio,k DSRO, può essere calcolata in modo originale attraverso i menzionati parametri fisici. La valutazione, cosí ottenuta in maniera semiteorica, è in crescente accordo con i risultati della misura diretta dik DSRO quanto piú gli effetti del trattamento termomagnetico si avvicinano alla loro saturazione. Detti effetti possono essere sintetizzati in una presenza di stress residui, lievemente maggiore rispetto a quanto avviene dopo il solo trattamento termico, ed in un grande aumento del coefficiente di magnetostrizione longitudinale.

Резюме

Анизотропия, индуцированная отжигом в поперечном магнитном поле, коррелирует с модулем Юнга, продольной магнитострикции и коэффициентом магнитоупрутой связи. Показывается, что величина анизотропии, полученная из ориентационного короткодействующего упорядочения,k DSRO, может быть вычислена с помощью вышеуказанных параметров. Эта оценкаk DSRO согласуется с непосредственно измеряемой, величиной, когда происходит насыщение эффектов магнитного отжига. Влияние магнитного теплового эффекта может быть описано с помощвю небольшого увеличения внутреннего напряжения, по сравнению с обычным отжигом, и большого увеличения продольной магнитострикции.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Egami:J. Magn. Magn. Mater.,31–34, 1571 (1983).

    Article  Google Scholar 

  2. L. Lanotte, P. Matteazzi andV. Tagliaferri:J. Magn. Magn. Mater.,42, 183 (1984).

    Article  ADS  Google Scholar 

  3. H. Warlimont andR. Boll:J. Magn. Magn. Mater.,26, 97 (1982).

    Article  ADS  Google Scholar 

  4. M. Brouha andJ. van der Borst:Proc. Intermag.,24, 7594 (1979).

    Google Scholar 

  5. Z. Kaczkowski:J. Appl. Phys.,53, 8119 (1982).

    Article  ADS  Google Scholar 

  6. O. V. Nielsen, H. J. Vind Nielsen, T. Masumoto andH. M. Kimura:J. Magn. Magn. Mater.,24, 88 (1981).

    Article  ADS  Google Scholar 

  7. T. Egami:Rep. Prog. Phys.,47, 1601 (1984).

    Article  ADS  Google Scholar 

  8. F. E. Luborsky andJ. L. Walter:IEEE Trans. Mag., MAG-13, 953 (1977).

    Article  ADS  Google Scholar 

  9. M. Vazquez, J. Gonzalez andA. Hernando:J. Magn. Magn. Mater.,53, 323 (1986)

    Article  ADS  Google Scholar 

  10. B. S. Berry andW. C. Pritchet:Phys. Rev. Lett.,34, 1022 (1975).

    Article  ADS  Google Scholar 

  11. M. Stefan, Cs. Kopasz andS. Nemeth:J. Magn. Magn. Mater.,26, 124 (1982).

    Article  ADS  Google Scholar 

  12. L. Lanotte andV. Tagliaferri:High Temp. Mater. Proc.,7, 25 (1986).

    Google Scholar 

  13. P. M. Anderson:J. Appl. Phys.,11, 8101 (1982).

    Article  ADS  Google Scholar 

  14. A. Hernando, A. Garcia-Escorial, E. Ascasibar andM. Vasquez:J. Phys. D,16, 1999 (1983).

    Article  ADS  Google Scholar 

  15. L. Lanotte, C. Luponio andF. Porreca:J. Appl. Phys.,50, 438 (1979).

    Article  ADS  Google Scholar 

  16. L. Lanotte, C. Luponio andF. Porreca:J. Appl. Phys.,54, 4520 (1983).

    Article  ADS  Google Scholar 

  17. L. Lanotte, C. Luponio, F. Porreca andP. Matteazzi:J. Magn. Magn. Mater.,61, 225 (1986).

    Article  ADS  Google Scholar 

  18. H. Krönmuller:J. Phys. (Paris),41, C8, 618 (1980).

    Article  Google Scholar 

  19. W. Grimm, B. Metzner andA. Hubert:J. Magn. Magn. Mater.,41, 171 (1984).

    Article  ADS  Google Scholar 

  20. J. D. Livingston:Phys. Status Solidi A,70, 591 (1982).

    ADS  Google Scholar 

  21. B. S. Cullity:Introduction to Magnetic Materials (Addison-Wesley P.C., Reading, Mass., 1972), chapt. 8.

    Google Scholar 

  22. S. Chikazumi:Physics of Magnetism (J. Wiley, New York, N.Y., 1964), chapt. 17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanotte, L., Luponio, C. & Porreca, F. Magnetoelastic coupling coefficient and anisotropy induced by magnetic annealing in strips of noncrystalline material. Il Nuovo Cimento D 9, 633–645 (1987). https://doi.org/10.1007/BF02457025

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02457025

PACS. 75.60.Nt.

Navigation