Il Nuovo Cimento D

, Volume 9, Issue 6, pp 633–645 | Cite as

Magnetoelastic coupling coefficient and anisotropy induced by magnetic annealing in strips of noncrystalline material

  • L. Lanotte
  • C. Luponio
  • F. Porreca
Article

Summary

The anisotropy induced by magnetic annealing in a transversal field is correlated with the Young modulus, the longitudinal magnetostriction and the magnetoelastic coupling coefficient. Subsequently it is shown that the value of the anisotropy deriving from directional short-range ordering,k DSRO, can be calculated in an original manner by means of the mentioned parameters. Thisk DSRO evaluation is in increasing agreement with its directly measured value, when the magnetic-annealing effects approach saturation. The magnetic heat treatment influences can be described by a small rise of the internal stress, in comparison with conventional annealing, and a large increase of longitudinal magnetostriction.

PACS. 75.60.Nt.

Magnetic annealing and temperature-hysteresis effects 

Riassunto

L'anisotropia indotta da trattamento termico in campo magnetico trasversale si correla con il modulo di elasticità lineare, la magnetostrizione longitudinale ed il coefficiente di accoppiamento magnetoelastico, in provini nastriformi di metallo amorfo. Successivamente si dimostra che l'anisotropia magnetica prodotta per ordine direzionale a corto raggio,k DSRO, può essere calcolata in modo originale attraverso i menzionati parametri fisici. La valutazione, cosí ottenuta in maniera semiteorica, è in crescente accordo con i risultati della misura diretta dik DSRO quanto piú gli effetti del trattamento termomagnetico si avvicinano alla loro saturazione. Detti effetti possono essere sintetizzati in una presenza di stress residui, lievemente maggiore rispetto a quanto avviene dopo il solo trattamento termico, ed in un grande aumento del coefficiente di magnetostrizione longitudinale.

Резюме

Анизотропия, индуцированная отжигом в поперечном магнитном поле, коррелирует с модулем Юнга, продольной магнитострикции и коэффициентом магнитоупрутой связи. Показывается, что величина анизотропии, полученная из ориентационного короткодействующего упорядочения,k DSRO, может быть вычислена с помощью вышеуказанных параметров. Эта оценкаk DSRO согласуется с непосредственно измеряемой, величиной, когда происходит насыщение эффектов магнитного отжига. Влияние магнитного теплового эффекта может быть описано с помощвю небольшого увеличения внутреннего напряжения, по сравнению с обычным отжигом, и большого увеличения продольной магнитострикции.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    T. Egami:J. Magn. Magn. Mater.,31–34, 1571 (1983).CrossRefGoogle Scholar
  2. (2).
    L. Lanotte, P. Matteazzi andV. Tagliaferri:J. Magn. Magn. Mater.,42, 183 (1984).CrossRefADSGoogle Scholar
  3. (3).
    H. Warlimont andR. Boll:J. Magn. Magn. Mater.,26, 97 (1982).CrossRefADSGoogle Scholar
  4. (4).
    M. Brouha andJ. van der Borst:Proc. Intermag.,24, 7594 (1979).Google Scholar
  5. (5).
    Z. Kaczkowski:J. Appl. Phys.,53, 8119 (1982).CrossRefADSGoogle Scholar
  6. (6).
    O. V. Nielsen, H. J. Vind Nielsen, T. Masumoto andH. M. Kimura:J. Magn. Magn. Mater.,24, 88 (1981).CrossRefADSGoogle Scholar
  7. (7).
    T. Egami:Rep. Prog. Phys.,47, 1601 (1984).CrossRefADSGoogle Scholar
  8. (8).
    F. E. Luborsky andJ. L. Walter:IEEE Trans. Mag., MAG-13, 953 (1977).CrossRefADSGoogle Scholar
  9. (9).
    M. Vazquez, J. Gonzalez andA. Hernando:J. Magn. Magn. Mater.,53, 323 (1986)CrossRefADSGoogle Scholar
  10. (10).
    B. S. Berry andW. C. Pritchet:Phys. Rev. Lett.,34, 1022 (1975).CrossRefADSGoogle Scholar
  11. (11).
    M. Stefan, Cs. Kopasz andS. Nemeth:J. Magn. Magn. Mater.,26, 124 (1982).CrossRefADSGoogle Scholar
  12. (12).
    L. Lanotte andV. Tagliaferri:High Temp. Mater. Proc.,7, 25 (1986).Google Scholar
  13. (13).
    P. M. Anderson:J. Appl. Phys.,11, 8101 (1982).CrossRefADSGoogle Scholar
  14. (14).
    A. Hernando, A. Garcia-Escorial, E. Ascasibar andM. Vasquez:J. Phys. D,16, 1999 (1983).CrossRefADSGoogle Scholar
  15. (15).
    L. Lanotte, C. Luponio andF. Porreca:J. Appl. Phys.,50, 438 (1979).CrossRefADSGoogle Scholar
  16. (16).
    L. Lanotte, C. Luponio andF. Porreca:J. Appl. Phys.,54, 4520 (1983).CrossRefADSGoogle Scholar
  17. (17).
    L. Lanotte, C. Luponio, F. Porreca andP. Matteazzi:J. Magn. Magn. Mater.,61, 225 (1986).CrossRefADSGoogle Scholar
  18. (18).
    H. Krönmuller:J. Phys. (Paris),41, C8, 618 (1980).CrossRefGoogle Scholar
  19. (19).
    W. Grimm, B. Metzner andA. Hubert:J. Magn. Magn. Mater.,41, 171 (1984).CrossRefADSGoogle Scholar
  20. (20).
    J. D. Livingston:Phys. Status Solidi A,70, 591 (1982).ADSGoogle Scholar
  21. (21).
    B. S. Cullity:Introduction to Magnetic Materials (Addison-Wesley P.C., Reading, Mass., 1972), chapt. 8.Google Scholar
  22. (22).
    S. Chikazumi:Physics of Magnetism (J. Wiley, New York, N.Y., 1964), chapt. 17.Google Scholar

Copyright information

© Società Italiana di Fisica 1987

Authors and Affiliations

  • L. Lanotte
    • 1
  • C. Luponio
    • 1
  • F. Porreca
    • 1
  1. 1.Dipartimento di Fisica Nucleare, Struttura della Materia e Fisica ApplicataUnità G.N.S.M.-C.I.S.M. dell'UniversitàNapoliItalia

Personalised recommendations