Advertisement

Human Evolution

, Volume 11, Issue 1, pp 61–66 | Cite as

Longevity and life history in hominid evolution

  • M. L. A. Hammer
  • R. A. Foley
Article

Abstract

Under the assumption that life history in general and longevity in particular play an important part in the study of evolutionary patterns and processes, this paper focuses on predicting longevity changes across hominid evolution and attempts to throw light on the significance of such changes. We also consider some statistical arguments in the analysis of hominid life history patterns. Multiple regression techniques incorporating primate body weight and brain size data are used to predict hominied longevity and the results are compared to those in the literature. Our findings suggest that changes in hominid longevity are more likely to follow brain size than body weight, and that multiple regression techniques may be an appropriate avenue for future studies on life history variation in human evolution.

Key Words

Hominid evolution longevity Australopithecus Homo body weight brain size allometry life history 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, P. & Martin, L., 1992. Hominoid dietary evolution. In (A. Whiten and E. Widdowson, eds.) Foraging Strategies and Natural Diet of Monkeys, Apes and Humans, pp. 199–209. Clarendon Press, Oxford.Google Scholar
  2. Calder, W., 1984.Size, Function and Life History. Harvard University Press, Cambridge.Google Scholar
  3. Cutler, R., 1975.Evolution of human longevity and the genetic complexity governing ageing rate. Proceedings of the National Academy of Sciences USA, 72: 4664–4668.CrossRefGoogle Scholar
  4. Cutler, R., 1976.Evolution of longevity in primates. Journal of Human Evolution, 5: 169–202.CrossRefGoogle Scholar
  5. Foley, R., 1992. Evolutionary ecology of fossil hominids. In (E. Smith and B. Winterhalder, eds.) Evolutionary Ecology and Human Behavior, pp. 131–164. Aldine de Gruyter, New York.Google Scholar
  6. Foley, R., 1993.Ecological and social variance and the evolution of increased neocortical size. Behavior and Brain Science, 16: 702–703.CrossRefGoogle Scholar
  7. Hammer, M., 1994.Ecology and Life History Variation Among Early African Hominids: A Study of Longevity. M. Phil. Thesis, University of Cambridge.Google Scholar
  8. Harvey, P. & Clutton-Brock, T., 1985Life history variation in primates. Evolution, 39: 559–581.CrossRefGoogle Scholar
  9. Harvey, P., Martin, R. & Clutton-Brock, T., 1987. Life histories in comparative prospectives. In (B. Smunts, D. Cheney, R. Seyfarth, R. Wrangham and T. Struthsaker, eds.), Primate Societes, pp. 181–196. University of Chigaco Press, Chicago.Google Scholar
  10. Harvey, P. & Pagel, M. 1991.The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
  11. Hill, K., 1993.Life History Theory and Evolutionary Anthropology. Evolutionary Anthropology, 3: 78–88.CrossRefGoogle Scholar
  12. Jerison, H., 1973.The Evolution of Brain and Intelligence. Academic Press, New York.Google Scholar
  13. Jungers, W., 1988. New estimates of body size in Australopithecines. In (F. Grine, ed.) Evolutionary history of the “robust” Australopithecines, pp. 115–125. Gruyter, New York.Google Scholar
  14. Martin, R., 1981.Relative brain size and basal metabolic rate in terrestrial vertebrates. American Naturalist 116: 106–124.Google Scholar
  15. Martin, R., 1984. Body size, brain size and feeding strategies IN (D. Chivers et al., eds.) Food Acquisition and Processing in Primates, pp. 64–99. Plenum, New York.Google Scholar
  16. McHenry, H., 1988. New estimates of body weight in early hominids and their significance to encephalization and megadontia in “robust” Autralopithecines. In (F. Grine, ed.) Evolutionary History of the “robust” Australopithecines, pp. 133–148. Gruynter, New York.Google Scholar
  17. McHenry, H., 1992.How big were early hominids? Evolutionary Anthropology, 1: 15–20.CrossRefGoogle Scholar
  18. McHenry, H., 1994.Behavioural ecological implications of early hominid body size. Journal of Human Evolution, 27: 77–88.CrossRefGoogle Scholar
  19. Petres, R., 1983.The Ecological Implications of Body Size. Cambridge University Press, Cambridge.Google Scholar
  20. Sacher, G., 1959.Relation of lifespan to brain size and body weight in mammals. Ciba Foundation Colloquia, 5: 115–141.Google Scholar
  21. Schmidt-Nielsen, K., 1984.Scaling: Why is Animal Size so Important? Cambridge University Press, Cambridge.Google Scholar
  22. Smith, H., 1992.Life History and the Evolution of Human Maturation. Evolutionary Anthropology, 1: 134–142.CrossRefGoogle Scholar
  23. Smith, R., Gannon, P. & Smith, H., 1995.Ontogeny of australopithecines and early Homo:evidence from cranial capacity and dental eruption. Journal of Human Evolution, 29: 155–168.CrossRefGoogle Scholar
  24. Smith, R., 1994.Regression models for prediction equations. Journal of Human Evolution, 26: 239–244.CrossRefGoogle Scholar
  25. Smuts, B., Cheney, D., Seyfarth, R., Wrangham, R. & Struthsaker, T. (eds.), 1987Primate Societies, University of Chicago Press, Chicago.Google Scholar

Copyright information

© International Institute for the Study of Man 1996

Authors and Affiliations

  • M. L. A. Hammer
    • 1
  • R. A. Foley
    • 1
  1. 1.Hominid Evolutionary Biology Research GroupDepartment of Biological AnthropologyCambridgeU.K.

Personalised recommendations