Skip to main content
Log in

Neuronal structure and synaptic distribution of a uropod doser motor neuron in the crayfish terminal ganglion

  • Published:
Journal of Neurocytology

Summary

One of the uropod closer muscles in the crayfish, the adductor exopodite, is innervated by two large identified motor neurons. They were injected intracellularly with horseradish peroxidase or nickel chloride to reveal the structure and distribution of the input and output synapses using electron microscopy. The development of nickel with rubeanic acid greatly improved the tissue preservation at the ultrastructural level compared with ammonium sulphide. Cell bodies of the motor neurons lying in the ventro-lateral cortex of the ganglion are extensively invaginated by glial cells. Input synapses occur directly upon the primary neurite within the neuropil or upon the major anterior neurite. They are most abundant, however, upon the numerous smaller neurites of the motor neuron. The primary neurite in the dorsal region of the neuropil, upon which no synapses were made, is wrapped with glial cells. Occasionally, these two adductor exopodite motor neurons were found as adjacent postsynaptic profiles at the same synapse when both cells were stained simultaneously in the same preparation. In the present study we could not locate any sites of synaptic output which strictly fulfil the structural criteria of a synapse on the processes of the motor neuron. This result is inconsistent with physiological evidence which suggests that spikeless interactions occur between the two adductor exopodite motor neurons and their synergists. This might be the result of two possible features of the interaction: the sites of synaptic output may be limited to a few restricted branches, and the interaction between these motor neurons may depend largely upon electrical synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacon, J. P. &Altman, J. S. (1977) A silver intensification method for cobalt-filled neurons in whole-mount preparations.Brain Research 138, 359–63.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, C. H., Kandel, P. &Chen, M. (1981) Active zones atAplysia synapses: organization of presynaptic dense projections.Journal of Neurophysiology 46, 356–68.

    PubMed  CAS  Google Scholar 

  • Bassemir, U. K. &Strausfeld, N. J. (1983) Cytology of cobalt-filled neurons in flies: cobalt deposits at presynaptic and postsynaptic sites, mitochondria and the cytoskeleton.Journal of Neurocytology 12, 949–70.

    Article  PubMed  CAS  Google Scholar 

  • Burrows, M. &Horridge, G. A. (1974) Identified inputs to motor neurons of the locust metathoracic leg.Philosophical Transactions of the Royal Society of London, Series B 269, 49–94.

    CAS  Google Scholar 

  • DeREIMER, S. A. &Macagno, E. R. (1981) Light microscopic analysis of contacts between pairs of identified leech neurons with combined use of horseradish peroxidase and lucifer yellow.Journal of Neuroscience 1, 650–7.

    Google Scholar 

  • Granzow, B., Friesen, W. O. &Kristan, W. B. (1985) Physiological and morphological analysis of synaptic transmission between leech motor neurons.Journal of Neuroscience 5, 2035–50.

    PubMed  CAS  Google Scholar 

  • Gwilliam, G. F. &Burrows, M. (1980) Electrical characteristic of the membrane of an identified insect motoneurone.Journal of Experimental Biology 86, 49–61.

    Google Scholar 

  • Hausen, K. &Wolburg-Buchholz, K. (1980) An improved cobalt sulfide-silver intensification method for electron microscopy.Brain Research 187, 462–6.

    Article  PubMed  CAS  Google Scholar 

  • Heitler, W. J. (1978) Coupled motoneurones are part of the crayfish swimmeret central oscillator.Nature 275, 231–4.

    Article  PubMed  CAS  Google Scholar 

  • Heitler, W. J. (1981) Neural mechanisms of central pattern generation in the crayfish swimmeret system. InNeurobiology of Invertebrates (edited bySalànki, G.),Advances in Physiological Science, Vol. 23, pp. 369–83. Budapest: Akadáemiai Kiadó/Oxford: Pergamon Press.

    Google Scholar 

  • Hisada, M., Takahata, M. &Nagayama, T. (1984) Local non-spiking interneurons in the arthropod motor control system.Zoological Science 1, 681–700.

    Google Scholar 

  • Itoh, K., Konishi, A., Nomura, S., Mizuno, N., Nakamura, Y. &Sugimoto, T. (1979) Application of coupled oxidation reaction to electron microscopic demonstration of horseradish peroxidase: a cobaltglucose oxidase method.Brain Research 175, 341–6.

    Article  PubMed  CAS  Google Scholar 

  • King, D. G. (1976) Organization of crustacean neuropil. II. Distribution of synaptic contacts on identified motor neurons in lobster stomatogastric ganglion.Journal of Neurocytology 5, 239–66.

    Article  PubMed  CAS  Google Scholar 

  • Kondoh, Y. &Hisada, M. (1983) Intersegmental to intrasegmental conversion by ganglionic fusion in lateral giant interneurones of the crayfish.Journal of Experimental Biology 107, 515–519.

    Google Scholar 

  • Kondoh, Y. &Hisada, M. (1986a) Neuroanatomy of the terminal ganglion of the crayfish,Procambarus clarkii Girard.Cell and Tissue Research 243, 273–88.

    Article  Google Scholar 

  • Kondoh, Y. &Hisada, M. (1986b) The distribution and ultrastructure of synapses on a premotor local nonspiking interneuron of the crayfish.Journal of Comparative Neurology (in press).

  • Larimer, J. L., Eggleston, A. C., Masukawa, L. M. &Kennedy, D. (1971) The different connections and motor outputs of lateral and medial giant fibres in the crayfish.Journal of Experimental Biology 54, 391–402.

    PubMed  CAS  Google Scholar 

  • Larimer, J. L. &Kennedy, D. (1969) Innervation patterns of fast and slow muscles in the uropods of crayfish.Journal of Experimental Biology 51, 119–33.

    Google Scholar 

  • Mendelson, M. (1971) Oscillator neurones in crustacean ganglion.Science 171, 1170–3.

    PubMed  CAS  Google Scholar 

  • Muller, K. J. &McMahan, U. J. (1976) The shape of sensory and motor neurones and the distribution of their synapses in ganglia of the leech: a study using intracellular injection of HRP.Proceedings of the Royal Society of London, Series B 194, 481–99.

    CAS  Google Scholar 

  • Nagayama, T., Takahata, M. &Hisada, M. (1983) Local spikeless interaction of motoneuron dendrites in the crayfishProcambarus clarkii.Journal of Comparative Physiology 152, 335–45.

    Article  Google Scholar 

  • Pearson, K. G. &Fourtner, C. R. (1975) Non-spiking interneurones in walking system of the cockroach.Journal of Neurophysiology 38, 33–52.

    PubMed  CAS  Google Scholar 

  • Peters, B. H., Altman, J. S. &Tyrer, N. M. (1985) Synaptic connections between the hindwing stretch receptor and flight motor neurones in the locust revealed by double cobalt labelling for electron microscopy.Journal of Comparative Neurology 233, 269–84.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, C. E. (1980) Intracellularly injected cobaltous ions accumulate at synaptic densities.Science 207, 1477–9.

    PubMed  CAS  Google Scholar 

  • Phillips, C. E. (1981) Organization of motor neurons to a multiply innervated insect muscle.Journal of Neurobiology 12, 269–80.

    Article  PubMed  CAS  Google Scholar 

  • Pitman, R. M., Tweedle, C. D. &Cohen, M. J. (1972) Branching of central neurons: intracellular cobalt injection for light and electron microscopy.Science 176, 412–14.

    PubMed  CAS  Google Scholar 

  • Quicke, D. L. J. &Brace, R. C. (1979) Differential staining of cobalt- and nickel-filled neurones using rubeanic acid.Journal of Microscopy 115, 161–3.

    PubMed  CAS  Google Scholar 

  • Roberts, A. &Bush, B. M. H. (1981) (eds)Neurons Without Impulses. Cambridge: Cambridge University Press.

    Google Scholar 

  • Simmers, A. J. &Bush, B. M. H. (1983) Central nervous mechanisms controlling rhythmic burst generation in the ventilatory motoneurones ofCarcinus maenas.Journal of Comparative Physiology 150, 1–21.

    Article  Google Scholar 

  • Strausfeld, N. J. (1976)Atlas of an Insect Brain. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Takahata, M., Yoshino, M. &Hisada, M. (1985) Neuronal mechanisms underlying crayfish steering behaviour as an equilibrium response.Journal of Experimental Biology 114, 599–617.

    Google Scholar 

  • Tolbert, L. P. &Calabrese, R. L. (1985) Anatomical analysis of contacts between identified neurons that control heartbeat in the leechHirudo medicinalis.Cell and Tissue Research 242, 257–67.

    Article  Google Scholar 

  • Tolbert, L. P. &Hildebrand, J. G. (1981) Organization and synaptic ultrastructure of glomeruli in the antennal lobes of the mothManduca sexta: a study using thin sections and freeze-fracture.Proceedings of the Royal Society of London, Series B 213, 279–301.

    Article  Google Scholar 

  • Tyrer, N. M. &Altman, J. S. (1974) Motor and sensory flight neurones in a locust demonstrated using cobalt chloride.Journal of Comparative Neurology 157, 117–38.

    Article  PubMed  CAS  Google Scholar 

  • Tyrer, N. M. &Bell, E. M. (1974) The intensification of cobalt-filled neurone profiles using a modification of Timm's sulphide-silver method.Brain Research 73, 151–5.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, A. &Grundfest, H. (1961) Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons.Journal of General Physiology 45, 267–308.

    Article  PubMed  CAS  Google Scholar 

  • Watson, A. H. D. (1984) The dorsal unpaired median neurons of the locust metathoracic ganglion: neuronal structure and diversity, and synaptic distribution.Journal of Neurocytology 13, 303–27.

    Article  PubMed  CAS  Google Scholar 

  • Watson, A. H. D. &Burrows, M. (1981) Input and output synapses on identified motor neurones of a locust revealed by the intracellular injection of horseradish peroxidase.Cell and Tissue Research 215, 325–32.

    Article  PubMed  CAS  Google Scholar 

  • Watson, A. H. D. &Burrows, M. (1982) The ultrastructure of identified locust motor neurones and their synaptic relationships.Journal of Comparative Neurology 205, 383–97.

    Article  PubMed  CAS  Google Scholar 

  • Watson, A. D. H., Burrows, M. &Hale, J. P. (1985) The morphology and ultrastructure of common inhibitory motor neurones in the thorax of the locust.Journal of Comparative Neurology 239, 341–59.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. A. &Phillips, C. E. (1982) Locust local nonspiking interneurons which tonically drive antagonistic motor neurons: physiology, morphology, and ultrastructure.Journal of Comparative Neurology 204, 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Wine, J. J. &Krasne, F. B. (1982) The cellular organization of crayfish escape behavior. InThe Biology of Crustacea, Vol. 4 (edited bySandeman, D. C. &Atwood, H. L.), pp. 241–92. New York: Academic Press.

    Google Scholar 

  • Wood, M. R., Pfenninger, K. &Cohen, M. J. (1977) Two types of presynaptic configurations in insect central synapses.Brain Research 130, 25–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondoh, Y., Sato, M. & Hisada, M. Neuronal structure and synaptic distribution of a uropod doser motor neuron in the crayfish terminal ganglion. J Neurocytol 16, 39–54 (1987). https://doi.org/10.1007/BF02456696

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02456696

Keywords

Navigation