Skip to main content
Log in

Freeze-fracture studies on the giant axon and ensheathing Schwann cells of the squid

  • Published:
Journal of Neurocytology

Summary

The giant axons and encompassing sheaths from the stellar nerves of the squidsSepioteuthis sepioidea andLoligo forbesi have been analysed by freeze-fracture. The axolemma exhibits many intramembranous particles (IMPs) that fracture onto the cytoplasmic membrane half-leaflet (P-face); the larger IMPs may be aggregated into clusters. Axoplasmic subsurface cisternae are found beneath this membrane. Clustered or aligned arrays of P-face IMPs are also found on the membranes of the Schwann cells that intimately encapsulate the giant axons as well as ‘capitate’ projections of Schwann cells into the axons. When adjacent Schwann cells abut directly against one another, aligned E-face IMPs are found along the fracture plane of the upturning membranes. These E-face alignments of IMPs have complementary furrows on the Schwann cell membranes which exhibit no complementary structure on the axolemma as they represent the clefts between adjacent glial cells. The other Schwann cell membranes exhibit P-face dimples and E-face (extracellular membrane half-leaflet) protuberances which may reflect endo- or exocytotic activity; alternatively they may represent caveolae. Comparable structures are occasionally observed at axo-glial interfaces. However, those in the Schwann cell membrane could be part of the transverse tubular lattice system which also exists in adaxonal glia. Beyond the Schwann cells, layers of endoneurial cells (fibrocytes) are interleaved by collagen-filled spaces. These cells exhibit extensive cross-fractured intracellular invaginations as well as inpushings of the extracellular matrix material. Their membranes exhibit a large number of IMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, N. J., Pichon, Y. &Lane, N. J. (1977) Primitive forms of potassium homeostasis: observations on crustacean central nervous system with implications for vertebrate brain.Experimental Eye Research, Suppl.25, 259–71.

    Article  CAS  Google Scholar 

  • Adelman, W. J., Moses, J. &Rice, R. V. (1977) An anatomical basis for the resistance in series with the excitable membrane of the squid giant axon.Journal of Neurocytology 6, 621–46.

    Article  PubMed  Google Scholar 

  • Capanna, E. &Caravita, C. (1966) Osservazioni ultrastructurali sul nervo olfattorio degli anfibi anuri.Lincei Accademia Rendiconti delle scienze fisiche e matematiche naturelle, Serie VIII 41, 139–49.

    Google Scholar 

  • Chang, D. C., Tasaki, I. &Reese, T. S. (1984) A freeze-fracture study of the squid axon membrane.Biophysical Journal 45, 362A.

    Google Scholar 

  • Cole, K. C. (1949) Dynamic electrical characteristics of the squid axon membrane.Archives des sciences physiologiques 3, 253–8.

    CAS  Google Scholar 

  • De Contreras, A. M. &Villegas, G. M. (1982) Aspectos ultraestructurales del nervio vago del conejo adulto.Acta cientifica venezolana 33, 459–68.

    PubMed  Google Scholar 

  • Evans, P. D., Reale, V. &Villegas, J.(1986) Peptidergic modulation of the membrane potential of the Schwann cells in the squid nerve fibre.Journal of Physiology 379, 61–82.

    PubMed  CAS  Google Scholar 

  • Frankenhaeuser, B. &Hodgkin, A. L. (1956) The after-effects of impulses in the giant nerve fibres ofLoligo.Journal of Physiology 131, 341–76.

    PubMed  CAS  Google Scholar 

  • Gainer, H. (1978) Intercellular transfer of proteins from glial cells to axons.Trends in Neuroscience 1, 93–6.

    Google Scholar 

  • Geren, B. B. &Schmitt, F. O. (1954) The structure of the Schwann cell and its relation to the axon in certain invertebrate nerve fibers.Proceedings of the National Academy of Sciences USA 40, 863–70.

    Article  CAS  Google Scholar 

  • Henkart, M. P., Reese, T. S. &Brinley, F. J., Jr (1978) Endoplasmic reticulum sequesters calcium in the squid giant axon.Science 202, 1300–3.

    PubMed  CAS  Google Scholar 

  • Hodge, A. J. &Adelman, W. J. (1980) The neuroplasmic network inLoligo andHermissenda neurons.Journal of Ultrastructure Research 70, 220–41.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L. &Huxley, A. F. (1952a) Currents carried by sodium and potassium through the membrane of the giant axon ofLoligo.Journal of Physiology 116, 449–72.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L. &Huxley, A. F. (1952b) A quantitative description of membrane current and its application to conduction and excitation in nerve.Journal of Physiology 117, 500–44.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., Huxley, A. F. &Katz, B. (1952) Measurement of current-voltage relations in the membrane of the giant axon ofLoligo.Journal of Physiology 116, 424–48.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L. &Katz, B. (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid.Journal of Physiology 108, 37–77.

    Google Scholar 

  • Holtzman, E., Freeman, A. R. &Kashner, L. A. (1970) A cytochemical and electron microscope study of channels in the Schwann cells surrounding lobster giant axons.Journal of Cell Biology 44, 438–45.

    Article  PubMed  CAS  Google Scholar 

  • Lane, N. J. (1981) Invertebrate neuroglia: junctional structure and development.Journal of Experimental Biology 95, 7–33.

    Google Scholar 

  • Lane, N. J. (1985) Structure of components of the nervous system. InComprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 5 (edited byKerkut, G. A. &Gilbert, L. I.), pp. 1–48. Oxford: Pergamon Press.

    Google Scholar 

  • Lane, N. J. &Abbott, N. J. (1975) The organization of the nervous system in the crayfishProcambarus clarkii with emphasis on the blood-brain interface.Cell and Tissue Research 156, 173–87.

    Article  PubMed  CAS  Google Scholar 

  • Lane, N. J., Swales, L. S. &Abbott, N. J. (1977) Lanthanum penetration in crayfish nervous systems: observations on intact and desheathed preparations.Journal of Cell Science 23, 315–24.

    PubMed  CAS  Google Scholar 

  • Laser, R. J. &Tytell, M. A. (1981) Macromolecular transfer from glia to the axon.Journal of Experimental Biology 95, 153–66.

    Google Scholar 

  • Lieberman, E. M., Villegas, J. &Villegas, G. M. (1981) The nature of the membrane potential of glial cells associated with the medial axon of the crayfish.Neuroscience 6, 261–71.

    Article  PubMed  CAS  Google Scholar 

  • Livingston, R. B., Pfenninger, K., Moor, H. &Akert, K. (1973), Specialized paranodal and interparanodal glial-axonal junctions in the peripheral and central nervous system. A freeze-etching study.Brain Research 58, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R. (1969) The structural organization of the intracerebral giant fiber system of cephalopods: the chiasma of the first order giant axons.Zeitschrift für Zellforschung und mikroskopische Anatomie 97, 50–68.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, G. &Sakai, H. (1979) Microtubules inside the plasma membrane of squid giant axons and their possible physiological function.Journal of Membrane Biology 50, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Metuzals, J. &Izzard, C. S. (1969) Spatial patterns of thread-like elements in the axoplasm of the giant nerve fiber of the squid (Loligo pealii L.) as disclosed by differential interference microscopy and by electron microscopy.Journal of Cell Biology 43, 456–79.

    Article  PubMed  CAS  Google Scholar 

  • Metuzals, J., Tasaki, I., Terakawa, S. &Clapin, D. F. (1981) Removal of Schwann sheath from the giant nerve fiber of the squid: an electron microscopic study of the axolemma and associated axoplasmic structures.Cell and Tissue Research 221, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Meves, H. (1984) Hodgkin and Huxley: Thirty years after. InCurrent Topics in Membrane and Transport, Vol. 22 (edited byBaker, P.) pp. 279–329. New York: Academic Press.

    Google Scholar 

  • Miller, R. G. &Pinto Da Silva, P. (1977) Particle rosettes in the periaxonal Schwann cell membrane and particle clusters in the axolemma of rat sciatic nerve.Brain Research 130, 135–41.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, E., Osen, K. K., Schnapp, B. &Friedrich, V. L. (1977) Distribution of Schwann cell cytoplasm and plasmalemmal vesicles (caveolae) in peripheral myelin sheaths. An electron microscopic study with thin sections and freeze-fracturing.Journal of Neurocytology 6, 647–68.

    Article  PubMed  CAS  Google Scholar 

  • Noirot-Timothée, C. &Noirot, C. (1980) Septate and scalariform junctions in arthropods.International Review of Cytology 63, 97–140.

    Article  Google Scholar 

  • Peracchia, C. (1974) Excitable membrane ultrastructure. I. Freeze-fracture of crayfish axons.Journal of Cell Biology 61, 107–22.

    Article  PubMed  CAS  Google Scholar 

  • Peracchia, C. &Robertson, J. D. (1971) Increased osmiophilia of axonal membranes of crayfish as a result of electrical stimulation, asphyxia, or treatment with reducing agents.Journal of Cell Biology 51, 223–39.

    Article  PubMed  CAS  Google Scholar 

  • Pick, J. (1962) On submicroscopic organization of myelinated sympathetic nerve fibers in the frog (Rana pipiens).Anatomical Record 144, 295–336.

    Article  PubMed  CAS  Google Scholar 

  • Pumplin, D. W. &Reese, T. S. (1978) Membrane ultrastructure of the giant synapse of the squidLoligo pealei.Neuroscience 3, 685–96.

    Article  PubMed  CAS  Google Scholar 

  • Richards, A. G., Jr, Steinbach, H. B. &Anderson, T. F. (1943) Electron microscope studies of the squid giant nerve axoplasm.Journal of Cellular and Comparative Physiology 21, 129–43.

    Article  Google Scholar 

  • Roots, B. I. &Lane, N. J. (1983) Myelinating glia of earthworm giant axons: thermally induced intra-membranous changes.Tissue and Cell 15, 695–709.

    Article  PubMed  CAS  Google Scholar 

  • Shrager, P., Starkus, J. D., Lo, M.-V. C. &Peracchia, C. (1983) The periaxonal space of crayfish axons.Journal of General Physiology 82, 221–44.

    Article  PubMed  CAS  Google Scholar 

  • Vale, R. D., Reese, T. S. &Sheetz, M. P. (1985) Identification of a novel force generating protein, kinesin, involved in microtubule-based motility.Cell 42, 39–50.

    Article  PubMed  CAS  Google Scholar 

  • Villegas, G. M. (1969) Electron microscope study of the giant nerve fiber of the giant squidDosidicus gigas.Journal of Ultrastructure Research 26, 501–14.

    Article  PubMed  CAS  Google Scholar 

  • Villegas, J. (1972) Axon-Schwann cell interaction in the squid nerve fibre.Journal of Physiology 225, 275–96.

    PubMed  CAS  Google Scholar 

  • Villegas, J. &Jenden, D. J. (1979) Acetylcholine content of the Schwann cell and axon in the giant nerve fibre of the squid.Journal of Neurochemistry 32, 761–6.

    PubMed  CAS  Google Scholar 

  • Villegas, G. M., Lane, N. J., Sanchez, F. &Villegas, J. (1984) Features of squid giant axon membranes as revealed by freeze-fracture replicas. Proceedings of 8th International Biophysics Congress, Bristol, UK, Abstract No 203, p. 304.

  • Villegas, G. M. &Villegas, R. (1960) The ultrastructure of the giant nerve fiber of the squid. Axon-Schwann cell relationship.Journal of Ultrastructure Research 3, 362–73.

    Article  PubMed  CAS  Google Scholar 

  • Villegas, R. &Villegas, G. M. (1962) The endoneurium cells of the squid giant nerve and their permeability to14C-glycerol.Biochimica et Biophysica Acta 60, 202–4.

    Article  PubMed  CAS  Google Scholar 

  • Villegas, G. M. &Villegas, R. (1963) Morphogenesis of the Schwann channels in the squid nerve.Journal of Ultrastructure Research 8, 197–205.

    Article  PubMed  CAS  Google Scholar 

  • Villegas, G. M. &Villegas, R. (1968) Ultrastructural studies of the squid nerve fibres.Journal of General Physiology 51, 44–60s.

    Article  Google Scholar 

  • Villegas, G. M. &Villegas, J. (1974) Acetylcholinesterase localization in the giant nerve fiber of the squid.Journal of Ultrastructure Research 46, 149–63.

    Article  PubMed  CAS  Google Scholar 

  • Villegas, G. M. &Villegas, J. (1976) Structural complexes in the squid axon membrane sensitive to ionic concentrations and cardiac glycosides.Journal of Cell Biology 69, 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Villegas, G. M. &Villegas, R. (1984) Squid axon Ultrastructure. InCurrent Topics in Membrane and Transport, Vol. 22 (edited byBaker, P.), pp. 3–37. New York: Academic Press.

    Google Scholar 

  • Villegas, G. M., Villegas, J. &De Weer, P. (1972) Proteolytic enzyme and strophanthoside effects on the ultrastructure and membrane potentials of the squid giant nerve fibre. 4th International Biophysics Congress, Moscow. Abstract ElXa 4/1.

  • Waxman, S. G. (1981) Cytochemical heterogeneity of the axon membrane.Trends in Neuroscience 4, 7–9.

    Article  Google Scholar 

  • Young, J. Z. (1934) Structure of nerve fibers inSepia.Journal of Physiology 83, 27P-28P.

    Google Scholar 

  • Young, J. Z. (1936) The structure of nerve fibres in Cephalopods and Crustacea.Proceedings of the Royal Society of London, Series B 121, 319–37.

    Article  Google Scholar 

  • Young, J. Z. (1939) Fused neurons and synaptic contacts in the giant nerve fibres of cephalopods.Philosophical Transactions of the Royal Society of London, Series B 229, 465–503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villegas, G.M., Lane, N.J. & Villegas, J. Freeze-fracture studies on the giant axon and ensheathing Schwann cells of the squid. J Neurocytol 16, 11–21 (1987). https://doi.org/10.1007/BF02456694

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02456694

Keywords

Navigation