Il Nuovo Cimento D

, Volume 14, Issue 8, pp 821–832 | Cite as

The perturbed Korteweg-de Vries equation: Evolution of solitons

  • N. Virgopia
  • F. Ferraioli
Article
  • 17 Downloads

Summary

In this paper we examine the dynamic of solitons in the presence of external forces expressed by an-degree polynomial perturbative term or by a combination of polynomial and differential terms in the dependent variable. Under the action of these forces the soliton profile will no longer be a simple translation: asymptotic behaviour of the wave amplitude to threshold values (stationary equilibrium states) are now possible and “explosions” may occur at some finite “critical time” at which the soliton amplitude becomes infinite.

PACS 47.10

General theory 

PACS 47.35

Hydrodynamic waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. S. Gardner, J. M. Green, M. D. Kruskal andR. M. Miura:Phys. Rev. Lett.,19, 1095 (1967).MATHCrossRefADSGoogle Scholar
  2. [2]
    C. S. Gardner, J. M. Green, M. D. Kruskal andR. M. Miura:Comments Pure Appl. Math.,27, 97 (1974).MATHGoogle Scholar
  3. [3]
    R. M. Miura:SIAM Review,18, 412 (1976).MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    W. Eckhaus andA. Van Harten:The Inverse Scattering Transformation and the Theory of Solitons (North Holland, Amsterdam 1981).Google Scholar
  5. [5]
    G. L. Lamb Jr.:Elements of Soliton Theory(Wiley Interscience, New York, N.Y., 1980).Google Scholar
  6. [6]
    P. G. Drazin:Solitons (Cambridge University Press, Cambridge, 1983).Google Scholar
  7. [7]
    G. B. Whitham:Linear and Nonlinear Waves (J. Wiley, New York, N.Y., 1974).Google Scholar
  8. [8]
    V. I. Karpmann andM. S. Maslov:Sov. Phys. JETP,46, 281 (1977).Google Scholar
  9. [9]
    V. I. Karpmann andM. S. Maslov:Sov. Phys. JETP,48, 252 (1978).Google Scholar
  10. [10]
    V. I. Karpmann:Phys. Lett. A,66, 13 (1978).MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    V. I. Karpmann:Phys. Scri.,20, 462 (1979).ADSGoogle Scholar
  12. [12]
    J. Engelbrecht andA. Jeffrey:Wave Motion,9, 533 (1987).MATHCrossRefGoogle Scholar
  13. [13]
    J. Engelbrecht andY. Khamidullin:Phys. Earth Planet. Inter.,50, 39 (1988).CrossRefADSGoogle Scholar
  14. [14]
    J. Engelbrecht:Wave Motion,14, 85 (1991).MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    L. A. Ostrovsky:Soliton in Active Media, inProceeding of the IUTAM Symposium on Nonlinear Deformation Waves, Tallin 1982, edited byU. Nigul andJ. Engelbrecht, (Springer, Berlin, 1983), p. 30.Google Scholar

Copyright information

© Società Italiana di Fisica 1992

Authors and Affiliations

  • N. Virgopia
    • 1
  • F. Ferraioli
    • 1
  1. 1.Dipartimento di Matematica dell'Università di Roma «La Sapienza»RomaItalia

Personalised recommendations