Skip to main content
Log in

A new mutation inEscherichia coli K12,isfA, which is responsible for inhibition of SOS functions

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

A new mutation inEscherichia coli K12,isfA, is described, which causes inhibition of SOS functions. The mutation, discovered in a ΔpolA + mutant, is responsible for inhibition of several phenomena related to the SOS response inpolA + strains: UV- and methyl methanesulfonate-induced mutagenesis, resumption of DNA replication in UV-irradiated cells, cell filamentation, prophage induction and increase in UV sensitivity. TheisfA mutation also significantly reduces UV-induced expression of β-galactosidase fromrecA::lacZ andumuC′::lacZ fusions. The results suggest that theisfA gene product may affect RecA* coprotease activity and may be involved in the regulation of the termination of the SOS response after completion of DNA repair. TheisfA mutation was localized at 85 min on theE. coli chromosome, and preliminary experiments suggest that it may be dominant to the wild-type allele.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagdasarian M, Bailone A, Bagdasarian MM, Manning, PA, Lurz R, Timmis KN, Devoret R (1986) An inhibitor of SOS induction specified by a plasmid locus inEscherichia coli. Proc Natl Acad Sci USA 83:5723–5726

    Article  PubMed  CAS  Google Scholar 

  • Bagdasarian M, Bailone A, Angulo JF, Stolz P, Bagdasarian M, Devoret R (1992) PsiB, an anti-SOS protein is transiently expressed by the F sex factor during its transmission to anEscherichia coli K-12 recipient. Mol Microbiol 6(7):885–893

    PubMed  CAS  Google Scholar 

  • Bates H, Bridges BA (1991) Mutagenic DNA repair inEscherichia coli. XIX On the roles of RecA protein in ultraviolet light mutagenesis. Biochemie 73:485–489

    Article  CAS  Google Scholar 

  • Bates H, Randall SK, Rayssiguier Ch, Bridges BA, Goodman MF, Radman M (1989) Spontaneous and UV-induced mutations inEscherichia coli K-12 strains with altered or absent DNA polymerase I. J Bacteriol 171:2480–2484

    PubMed  CAS  Google Scholar 

  • Bębenek K, Janion C (1985) Ability of base analogs to induce the SOS response: effect of adam mutation and mismatch repair system. Mol Gen Genet 201:519–524

    Article  PubMed  Google Scholar 

  • Bonner CA, Randall SK, Rayssiguier C, Radman M, Eritja R, Kaplan BE, McEntee K, Goodman MF (1988) Purification and characterisation of an inducibleE. coli DNA polymerase capable of insertion and bypass at abasic lession in DNA. J Biol Chem 263:18946–18952

    PubMed  CAS  Google Scholar 

  • Burckhardt SE, Woodgate R, Scheuermann RH, Echols H (1988) UmuD mutagenesis protein ofEscherichia coli: overproduction, purification, and cleavage by RecA. Proc Natl Acad Sci USA 85:1811–1815

    Article  PubMed  CAS  Google Scholar 

  • Counkell MB, Yanofsky C (1970) Increased frequency of deletions in DNA polymerase mutants ofEscherichia coli. Nature 228: 633–635

    Article  Google Scholar 

  • Craig NL, Roberts JW (1980)Escherichia coli recA protein-directed cleavage of phage λ repressor requires polynucleotide. Nature 283:26–30

    Article  PubMed  CAS  Google Scholar 

  • Devoret M, Bailone A, Dutreix M, Moreau PL, Sommer S, Bagdasarian M (1988) Regulation of activation of RecA protein inE. coli. In: Fredberg EC, Hanawalt PC (eds) Mechanisms and consequences of DNA damage processing. Alan R Liss, New York, pp 437–443

    Google Scholar 

  • Doudney CO (1971) Deoxyribonucleic acid replication in UV-damaged bacteria revisited. Mutat Res 12:121–127

    PubMed  CAS  Google Scholar 

  • Dragutin JS, Romac SP (1982) Powerful mutator activity of thepolA1 mutation within the histidine region ofEscherichia coli K-12. J Bacteriol 149:955–960

    Google Scholar 

  • Dutriex M, Moreau PL, Bailone A, Galibert F, Battista JR, Walker GC, Devoret R (1989) NewrecA mutations that dissociate the various RecA protein activities inEscherichia coli provide evidence for an additional role for RecA protein in UV-mutagenesis. J Bacteriol 171:2415–2423

    Google Scholar 

  • Echols H, Goodman MF (1990) Mutation induced by DNA damage: a many protein affair. Mutat Res 236:301–311

    PubMed  CAS  Google Scholar 

  • Golub EI, Bailone A, Devoret R (1988) A gene encoding an SOS inhibitor is present in different conjugative plasmids. J Bacteriol 170:4392–4394

    PubMed  CAS  Google Scholar 

  • Henry MF, Cronan JE Jr (1991) Direct and general selection for lysogens ofEscherichia coli by phage λ recombinant clones. J Bacteriol 173:3724–3731

    PubMed  CAS  Google Scholar 

  • Horii T, Ogawa T, Nakatani T, Hase T, Matsubara H, Ogawa H (1981) Regulation of SOS functions: purification ofE. coli LexA protein and determination of its specific site cleavaged by the RecA protein. Cell 27:515–522

    Article  PubMed  CAS  Google Scholar 

  • Joyce CM, Grindley NDF (1984) Method for determining whether a gene ofEscherichia coli is essential: application to thepolA gene. J Bacteriol 158:636–643

    PubMed  CAS  Google Scholar 

  • Khidhir MA, Casaregola S, Holland IB (1985) Mechanism of transient inhibition of DNA synthesis in ulraviolet-irradiatedE. coli: inhibition is independet ofrecA whilst recovery requires RecA protein itself and an additional, inducible SOS function. Mol Gen Genet 199:133–140

    Article  PubMed  CAS  Google Scholar 

  • Kim B, Little JW (1993) LexA and λ cI repressors as enzymes: specific cleavage in an intermolecular reaction. Cell 73:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Kohara Y, Akiyama K, Isono K (1987) The physiological map of the wholeEscherichia coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495–508

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A, Baker TA (1992) DNA replication, 2nd edn. WH Freeman, New York

    Google Scholar 

  • Little JW (1984) Autodigestion of LexA and phage Lambda repressors. Proc Natl Acad Sci USA 81:1375–1379

    Article  PubMed  CAS  Google Scholar 

  • Little JW (1991) Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73:411–422

    Article  PubMed  CAS  Google Scholar 

  • Little JW, Edmiston SH, Pacelli LZ, Mount DW (1980) Cleavage of theEscherichia coli lexA protein by therecA protease. Proc Natl Acad Sci USA 77:3225–3229

    Article  PubMed  CAS  Google Scholar 

  • Livneh Z, Cohen-Fix O, Skaliter R, Elizur T (1993) Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit Rev Biochem Mol Biol 28:465–513

    PubMed  CAS  Google Scholar 

  • McNally KP, Freitag NE, Walker GC (1990) LexA-independent expression of a mutantmucAB operon. J Bacteriol 172:6223–6231

    PubMed  CAS  Google Scholar 

  • Meyn MS, Rossman T, Troll W (1977) A protease inhibitor blocks SOS functions inEscherichia coli: antipain prevents λ repressor inactivation, ultraviolet mutagenesis, and filamentous growth. Proc Natl Acad Sci USA 74:1152–1156

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Mortelmans KE, Stocker BAD (1979) Segregation of the mutator property of plasmid R46 from its ultraviolet light-induced mutations. Mol Gen Genet 167:317–328

    Article  PubMed  CAS  Google Scholar 

  • Nohmi T, Battista JR, Dodson LA, Walker GC (1988) RecA-mediated cleavage activates UmuD for mutagensis: mechanistic relationship between transcriptional derepression and posttranslational activation. Proc Natl Acad Sci USA 85:1816–1820

    Article  PubMed  CAS  Google Scholar 

  • Pietrzykowska I, Felczak M (1991) Considerations on the mechanisms of UV-induced mutagenesis. In: Douglas RH et al. (eds) Light in biology and medicine, vol 2. Plenum Press, New York, pp 485–494

    Google Scholar 

  • Pietrzykowska I, Krych M, Shugar D (1983) Induction of SOS functions inE. coli by lesions resulting from incorporation of 5-bromouracil into DNA. Mutat Res 111:119–123

    PubMed  CAS  Google Scholar 

  • Pietrzykowska I, Krych M, Shugar D (1984) Mutagenesis induced by 5-bromouracil and methyl methane sulfonate: role of DNA polymerase I. Acta Biochim Pol 31:65–75

    PubMed  CAS  Google Scholar 

  • Roland KL, Little JW (1990) Reaction of LexA repressor with diisopropyl-fluorophosphate. A test of the serine protease model. J Biol Chem 265:12828–12835

    PubMed  CAS  Google Scholar 

  • Sassanfar M, Roberts JF (1990) Nature of the SOS-inducing signals inEscherichia coli. The involvement of DNA replication. J Mol Biol 212:79–96

    Article  PubMed  CAS  Google Scholar 

  • Schendel PF, Defais M (1980) The role ofumuC gene product in mutagenesis by simple alkylating agents. Mol Gen Genet 177:661–665

    Article  PubMed  CAS  Google Scholar 

  • Sedgwick SG, Bridges BA (1972) Survival, mutation and capacity to repair single strand DNA breaks after gamma irradiation in differentexr strains ofEscherichia coli. Mol Gen Genet 119:93–102

    Article  PubMed  CAS  Google Scholar 

  • Sedgwick SG, Goodwin PA (1985) Difference in mutagenic and recombinational DNA repair in enterobacteria. Proc Natl Acad Sci USA 82:4172–4176

    Article  PubMed  CAS  Google Scholar 

  • Shinagawa H, Iwasaki H, Kato T, Nakata A (1988) RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc Natl Acad Sci USA 85:1806–1810

    Article  PubMed  CAS  Google Scholar 

  • Singer M, Baker TA, Schnitzler G, Deischel SM, Goel M, Dove W, Jaacks KJ, Grossman AD, Erickson JW, Gross CA (1989) A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping ofE. coli. Microbiol Rev 53:1–24

    PubMed  CAS  Google Scholar 

  • Sweasy JB, Witkin EM, Sinha N, Roegner-Maniscalco V (1990) RecA protein ofEscherichia coli has a third essential role in SOS mutator activity. J Bacteriol 172:3030–3036

    PubMed  CAS  Google Scholar 

  • Vogel HL, Bonner DM (1956) Acetylornithinase ofEscherichia coli: partial purification and some properties. J Biol Chem 218:97–106

    PubMed  CAS  Google Scholar 

  • Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage inEscherichia coli. Microbiol Rev 48:60–93

    PubMed  CAS  Google Scholar 

  • Walker GC (1987) The SOS response ofEscherichia coli. In:Escherichia coli andSalmonella typhimurium: cellular and molecular biology. Am Soc Microbiol, Washington, DC, pp 1346–1357

    Google Scholar 

  • Witkin EM, Roegner-Maniscalco V, Sweasy JB, McCall J (1987) Recovery from UV-light-induced inhibition of DNA synthesis requiresumuDC gene products inrecA718 mutant strains but not inrecA + strains ofEscherichia coli. Proc Natl Acad Sci USA 84:6805–6809

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. J. Kilbey

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bębenek, A., Pietrzykowska, I. A new mutation inEscherichia coli K12,isfA, which is responsible for inhibition of SOS functions. Molec. Gen. Genet. 248, 103–113 (1995). https://doi.org/10.1007/BF02456619

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02456619

Key words

Navigation