Skip to main content

Advertisement

Log in

Influenza A virus hemagglutinin is a B cell-superstimulatory lectin

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Influenza A viruses display T cell-independent polyclonal B cell-activating properties which are mediated by the B cell-superstimulatory envelope glycoprotein hemagglutinin (HA). In this report, the receptor-binding requirements for B cell activation by influenza viruses were expected. Neuraminidase treatment of resting mature B cells from BALB/c mice abrogated late (proliferation/immunoglobulin synthesis), early (up-regulation of cell surface markers, including CD25, B220, and B7-1) and veryearly events (homotypic adhesion) in virus-responding B lymphocytes. Similarly, pretreatment of murine responder cells with different inhibitors ofN-glycosylation (tunicamycin, deoxymannojirimycin) significantly suppressed subsequent B lymphocyte activation by HA, but not control responses to lipopolysaccharide or anti-μ. Assays with chimeric HA transfectants, expressing the loop region of epitope B (amino acids 155–160) of the globular head of H2 (high B cell-stimulatory subtype) or H3 (medium-stimulatory subtype) on the protein backbone of a low-stimulatory subtype (H1) failed to alter the B cell-stimulatory activity of the virus, suggesting that the hypervariable loop region is not crucial in determining the B cell-activating properties of the protein. Collectively, our results imply that the B cell-superstimulatory function of influenza virus HA is not mediated by a direct protein/protein interaction, but via binding of HA to terminal sialic acid residues on cell surface receptor glycoproteins. These findings identify the influenza virus HA glycoprotein as the first viral lectin with lymphocyte-activating properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anders EM, Scalzo AA, Rogers GN, White DO (1986) Relationship between mitogenic activity of influenza viruses and the receptor-binding specificity of their hemagglutinin molecules. J Virol 60:476–482

    PubMed  CAS  Google Scholar 

  • Bast BJ, Zhou L-J, Freeman GJ, Colley KJ, Ernst TJ, Munro JM, Tedder TF (1992) The HB-6, CDw75, and CD76 differentiation antigens are unique cell-surface carbohydrate determinants generated by the beta-galactosidase alpha 2,6-sialyltransferase. J Cell Biol 116:423–435

    Article  PubMed  CAS  Google Scholar 

  • Callebaut C, Krust B, Jacotot E, Hovanessian AG (1993) T cell activation antigen, CD26, as a cofactor for entry of HIV in CD4+ cells. Science 262:2045–2050

    PubMed  CAS  Google Scholar 

  • Donis RO, Bean WJ, Kawaoka Y, Webster RG (1989) Distinct lineages of influenza virus H4 hemagglutinin genes in different regions of the world. Virology 169:408–417

    Article  PubMed  CAS  Google Scholar 

  • Enami M, Palese P (1991) High-efficiency formation of influenza virus transfectants. J Virol 65:2711–2713

    PubMed  CAS  Google Scholar 

  • Enami M, Luytjes W, Krystal M, Palese P (1990) Introduction of site-specific mutations into the genome of influenza virus. Proc Natl Acad Sci USA 87:3802–3805

    Article  PubMed  CAS  Google Scholar 

  • Gordon J (1994) B-cell signalling via the C-type lectins CD23 and CD72. Immunol Today 15:411–417

    Article  PubMed  CAS  Google Scholar 

  • Hedrick JA, Lao Z, Lipps SG, Wang Y, Todd SC, Lambris JD, Tsoukas CD (1994) Characterization of a 70-kDa, EBV gp350/220-binding protein on HSB-2 T cells. J Immunol 153:4418–4426

    PubMed  CAS  Google Scholar 

  • Higa HH, Rogers GN, Paulson JC (1985) Influenza virus hemagglutinins differentiate between receptor determinants bearingN-acetyl-,N-glycollyl-, andN,O-diacetylneuraminic aids. Virology 144:279–282

    Article  PubMed  CAS  Google Scholar 

  • Julius MH, Heusser CH, Hartmann KU (1984) Induction of resting B cells to DNA synthesis by soluble monoclonal anti-immunoglobulin. Eur J Immunol 14:753–757

    PubMed  CAS  Google Scholar 

  • Klenk HD, Rott R (1988) The molecular biology of influenza virus pathogenicity. Adv Virus Res 34:247–281

    Article  PubMed  CAS  Google Scholar 

  • Li SQ, Schulman JL, Moran T, Bona C, Palese P (1992) Influenza A virus transfectants with chimeric hemagglutinins containing epitopes from different subtypes. J Virol 66:399–404

    PubMed  CAS  Google Scholar 

  • Nobusawa E, Aoyama T, Kato H, Suzuki Y, Tateno Y, Nakajima K (1991) Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182:475–485

    Article  PubMed  CAS  Google Scholar 

  • Rogers GN, Paulson JC (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373

    Article  PubMed  CAS  Google Scholar 

  • Rott O, Cash E (1994) Influenza virus hemagglutinin induces differentiation of mature resting B cells and growth arrest of immature WEHI-231 lymphoma cells. J Immunol 152:5381–5391

    PubMed  CAS  Google Scholar 

  • Rott O, Charreire J, Semichon M, Bismuth G, Cash E (1995) B cell superstimulatory influenza virus (H2-subtype) induces B cell proliferation by a PKC-activating, Ca2+-independent mechanism. J Immunol 154:2092–2103

    PubMed  CAS  Google Scholar 

  • Rott O, Charreire J, Mignon-Godefroy K, Cash E (1995) B cell superstimulatory influenza virus activates peritoneal B cells. J Immunol 155:134–142

    PubMed  CAS  Google Scholar 

  • Scalzo AA, Anders EM (1985) Influenza viruses as lymphocyte mitogens. II. Role of I-E molecules in B cell mitogenesis by influenza A viruses of the H2 and H6 subtypes. J Immunol 135: 3524–3529

    PubMed  CAS  Google Scholar 

  • Schwarz RT, Datema R (1984) Inhibitors of triming: new tools in glycoprotein research. Trends Biochem Sci 9:32–34

    Article  CAS  Google Scholar 

  • Stamenkovic I, Sgroi D, Aruffo A, Sy MS, Anderson T (1991) The B lymphocyte adhesion molecule CD22 interacts with leukocyte common antigen CD45RO on T cells and alpha 2–6 sialyltransferase, CD75, on B cells. Cell 66:1133–1144

    Article  PubMed  CAS  Google Scholar 

  • Underwood PA, Skehel JJ, Wiley DC (1987) Receptor-binding characteristics of monoclonal antibody-selected antigenic variants of influenza virus. J Virol 61:206–208

    PubMed  CAS  Google Scholar 

  • Webster RG, Rott R (1987) Influenza virus A pathogenicity: the pivotal role of hemagglutinin. Cell 50:665–666

    Article  PubMed  CAS  Google Scholar 

  • Wiley DC, Skehel JJ (1987) The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 56:365–394

    Article  PubMed  CAS  Google Scholar 

  • Wilson IA, Skehel JJ, Wiley DC (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289:366–373

    Article  PubMed  CAS  Google Scholar 

  • Woodruff JF, Woodruff JJ (1974) Lymphocyte receptors for myxoviruses and paramyxoviruses. J Immunol 112:2176–2183

    PubMed  CAS  Google Scholar 

  • Yewdell JW, Taylor A, Yellen A, Caton A, Gerhard W, Bachi T (1993) Mutations in or near the fusion peptide of the influenza virus hemagglutinin affect an antigenic site in the globular region. J Virol 67:933–942

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rott, O., Charreire, J. & Cash, E. Influenza A virus hemagglutinin is a B cell-superstimulatory lectin. Med Microbiol Immunol 184, 185–193 (1996). https://doi.org/10.1007/BF02456134

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02456134

Key words

Navigation