Advertisement

Il Nuovo Cimento D

, Volume 2, Issue 2, pp 410–419 | Cite as

Retinotopic map on the visual cortex for eccentrically placed patterns: First noninvasive measurement

  • E. Maclin
  • Y. C. Okada
  • L. Kaufman
  • S. J. Williamson
Article

Summary

The observed cortical magnetic field evoked by a stimulus presented at various eccentricities in the visual field was interpreted as arising from current dipoles along the longitudinal fissure. The depth of the source increased as the eccentricity was increased, in agreement with the classical retinotopic map.

PACS. 87.40

Biomagnetism (including magnetocardiography) 

PACS. 85.25

Superconducting devices superconducting magnets 

Riassunto

Il campo magnetico corticale osservato, suscitato da uno stimolo presentato a varie eccentricità nel campo visivo, è stato interpretato come derivante da dipoli di corrente lungo la scissura longitudinale. La profondità della sorgente aumenta con l’aumento dell’eccentricità, in accordo con la classica mappatura retinotopica.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. A. Talbott andW. H. Marshall:Am. J. Ophthalmol.,24, 1255 (1941).Google Scholar
  2. (2).
    P. M. Daniel andD. Whitteridge:J. Physiol. (London),159, 203 (1961).Google Scholar
  3. (3).
    A. Cowey andE. T. Rolls:Exp. Brain Res.,21 (1974).Google Scholar
  4. (4).
    G. S. Brindley andW. S. Lewin:J. Physiol (London),196, 479 (1968).Google Scholar
  5. (5).
    H. L. Teuber, W. S. Battersby andM. B. Bender:Visual Field Defects After Penetrating Missile Wounds of the Brain (Cambridge, Mass., 1960).Google Scholar
  6. (6).
    W. H. Dobelle, M. G. Mladejosky andJ. P. Girvin:Science,183, 440 (1974).ADSGoogle Scholar
  7. (7).
    D. Brenner, J. Lipton, L. Kaufman andS. J. Williamson:Science,199, 81 (1978).ADSGoogle Scholar
  8. (8).
    Presented at theSixth International Conference on Event-Related Slow Potentials of the Brain, Lake Forest, July, 1981; to appear in the paper byL. Kaufman, Y. C. Okada, H. Weinberg andJ. Tripp as part of the proceedings in theAnnals of the New York Academy of Sciences.Google Scholar
  9. (9).
    G. L. Romani, S. J. Williamson andL. Kaufman:Science,216, 1339 (1982).ADSGoogle Scholar
  10. (10).
    G. L. Romani, S. J. Williamson, L. Kaufman andD. Brenner:Exp. Brain Res.,47, 381 (1982).CrossRefGoogle Scholar
  11. (11).
    E. L. Schwartz:Biol. Cybern.,37, 63 (1980).CrossRefGoogle Scholar
  12. (12).
    D. Brenner, Y. C. Okada, E. Maclin, S. J. Williamson andL. Kaufman: inBiomagnetism, edited byS. N. Ernè, H.-D. Hahlbohm andH. Lübbig (Berlin and New York, N. Y., 1981), p. 431.Google Scholar
  13. (13).
    S. J. Williamson andL. Kaufman: inBiomagnetism, edited byS. N. Erné, H.-D. Hahlbohm andH. Lübbig (Berlin and New York, N. Y., 1981), p. 353.Google Scholar
  14. (14).
    T. M. Darcey, J. P. Ary andD. H. Fender: inMotivation, Motor and Sensory Processes of the Brain, Progress in Brain Research, edited byH. H. Kornhuber andL. Deecke (Amsterdam, 1980), Vol.54.Google Scholar
  15. (15).
    T. M. Darcey:Methods for the localization of electrical sources in the human brain and applications to the visual system, Ph. D. Dissertation, California Institute of Technology (1979).Google Scholar
  16. (16).
    G. L. Romani, S. J. Williamson andL. Kaufman:Rev. Sci. Instrum.,53, 1815 (1982).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1983

Authors and Affiliations

  • E. Maclin
    • 1
  • Y. C. Okada
    • 1
  • L. Kaufman
    • 1
  • S. J. Williamson
    • 1
  1. 1.Neuromagnetism Laboratory, Department of Psychology and PhysicsNew York UniversityNew York

Personalised recommendations