Il Nuovo Cimento D

, Volume 15, Issue 1, pp 23–38 | Cite as

Relativistic electron motion in FEL-like fields taking retarded interactions into account

  • R. Giovanelli


The interaction of two charged particles both with each other (via Lienard-Wiechert retarded potentials) and with the wiggler field of an FEL structure, along which they are launched, is computed by means of the numerical integration of the relativistic motion equations, taking also an incoming laser wave into account. The bunching effect characterizing the collective behaviour of an electron beam in FEL-like fields is simulated by assuming one of the particles to be a suitable macrocharge.

PACS 42.55.Tb

Free electron lasers 

PACS 52.65

Plasma simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Podolsky andK. S. Kunz:Fundamentals of Electrodynamics (Marcel Dekker, New York and London, 1969).Google Scholar
  2. [2]
    C. G. Darwin:Philos. Mag.,39, 537 (1920);G. Breit:Phys. Rev.,39, 616 (1932).Google Scholar
  3. [3]
    J. D. Jackson:Classical Electrodynamics (John Wiley, New York, NY, 1975).Google Scholar
  4. [4]
    R. A. Moore, T. C. Scott andM. B. Morgan:Phys. Rev. Lett.,59, 525 (1987);Can. J. Phys.,66, 206 (1988);R. A. Moore andT. C. Scott:Can. J. Phys.,66, 365 (1988).CrossRefADSGoogle Scholar
  5. [5]
    R. N. Hill:J. Math. Phys.,8, 201 (1967).CrossRefGoogle Scholar
  6. [6]
    R. Barbini et al.:Riv. Nuovo Cimento,13, No. 6 (1990).Google Scholar
  7. [7]
    P. Luchini andH. Motz:Undulators and Free-Electron Lasers (Oxford University Press, Oxford, New York, Toronto, 1990).Google Scholar
  8. [8]
    B. D. McVey:Nucl. Instrum. Methods A,250, 449 (1986).CrossRefADSGoogle Scholar
  9. [9]
    T. M. Tran andJ. S. Wurtele:Review of Free-Electron-Laser (FEL) Simulation Techniques, CRPP-LRP392/90 (Ecole Polytechnique Federale de Lusanne-Suisse, 1990).Google Scholar
  10. [10]
    L. Landau andE. Lifchitz:Theorie du champ (MIR, Moscow, 1966).Google Scholar
  11. [11]
    A. Amir et al.:Cylindrical Gaussian eigenmodes of a rectangular waveguide resonator, three-dimensional numerical calculations of gain per mode, inFree-Electron Generators of Coherent Radiation, edited byC. A. Brau et al., SPIE,453 (SPIE, Bellingham, WA, 1984).Google Scholar
  12. [12]
    A. Gover, A. Friedman andA. Luccio:Nucl. Intrum. Methods A,259, 163 (1987)CrossRefADSGoogle Scholar
  13. [13]
    R. W. Warren et al.:IEEE J. Quantum Electron., QE-19, 391 (1983).CrossRefADSGoogle Scholar
  14. [14]
    C. Chen andR. C. Davidson:Phys. Rev. A,42, 5041 (1990).CrossRefADSGoogle Scholar
  15. [15]
    C. Chen andR. C. Davidson:Chaotic Particle Dynamics in Free Electron Lasers, PFC/JA-90-10 (1990) (Plasma Fusion Center, MIT, Cambridge, MA 02139).Google Scholar
  16. [16]
    C. Chen andR. C. Davidson:Phys. Fluids B,2, 171 (1990).MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    J. P. Boris:Relativistic plasma simulation, inProceedings of the Fourth Conference on Numerical Simulation of Plasmas, edited byJ. Boris andR. Shanny (NRL, Washington, D.C., 1970), p. 3.Google Scholar
  18. [18]
    C. K. Birdsall, A. Bruce andI. Longdon:Plasma Physics Via Computer Simulation (McGraw-Hill, New York, NY, 1985).Google Scholar
  19. [19]
    R. Giovanelli:Nuovo Cimento, D,9, 1443 (1987).MathSciNetGoogle Scholar
  20. [20]
    Ju. V. Novožilov andJu. A. Jappa:Elettrodinamica (MIR, Moscow, 1987).Google Scholar

Copyright information

© Società Italiana di Fisica 1993

Authors and Affiliations

  • R. Giovanelli
    • 1
  1. 1.Facoltà di Scienze dell’UniversitàParma

Personalised recommendations