Advertisement

Applied Mathematics and Mechanics

, Volume 16, Issue 7, pp 615–622 | Cite as

Inflation in ω-field cosmoloty

  • Lee Wa Tsan
  • Yu Xin (Alfred Yu)
Article

Abstract

In this paper, we shall apply the ω-field theory as first proposed by Yu13 to cosmology. Under the assumption that the spacetime geometry of the Universe is described by the Robertson-Walker metric and the matter tensor-consists only of theω-field, the Universe is found to follow a de Sitter Expansion. The horizon and flatness problems may thus be explained in a simple and natural way.

Key words

ω-field inflation Robertson-Walker metric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Yu Xin, ω-field theory of gravitation and cosmology,Astrophysics and Space Science.,154 (1989), 321–331.MathSciNetCrossRefGoogle Scholar
  2. [2]
    A. A. Starobinsky, A new type of isotropic cosmological models without singularity,Phys. Lett.,91 B (1980), 99.CrossRefGoogle Scholar
  3. [3]
    A. H. Guth, Inflatioanary universe: A possible solution to the horizon and flatness problems,Phys. Rev.,D23 (1981), 347.CrossRefGoogle Scholar
  4. [4]
    A. D. Linde, A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems.Phys. Lett.,108 B (1982), 389. Scalar field, fluctuations in the expanding universe and the new inflationary universe scenario,Phys. Lett.,116B (1982), 335.MathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Albrecht and P. J. Steinhardt. Cosmology for grand unified theories with radiatively induced symmetry breaking,Phys. Rev. Lett.,48 (1982), 1220–1223.CrossRefGoogle Scholar
  6. [6]
    A. D. Linde, The inflationary universe,Rep. Prog. Phys.,47 (1984), 925.MathSciNetCrossRefGoogle Scholar
  7. [7]
    300 Years of Gravitation, Cambridge University Press (1987).Google Scholar
  8. [8]
    A. Lapedes, Bogoliubov transformations, propagators, and the hawking effect,J. Math. Phys.,19 (1978), 2289.MathSciNetCrossRefGoogle Scholar
  9. [9]
    R. Brandenberger and R. Kahn, Hawking radiation in an inflationary universe,Phys. Lett.,119 B (1982), 75.MathSciNetCrossRefGoogle Scholar
  10. [10]
    G. W. Gibbons and S. W. Hawking, Cosmological event horizons, thermodynamics, and particle creattion,Phys. Rev.,D15 (1977), 2738.MathSciNetCrossRefGoogle Scholar
  11. [11]
    R. H. Brandenberger, Quantum field theory methods and inflationary universe models',Rev. of Mod. Phys.,57, 1 (1985).Google Scholar
  12. [12]
    R. H. Brandenberger.,Physics of the Early Universe, ed. by J. A. Peacon, (1990), 309–322.Google Scholar
  13. [13]
    J. R. Gott III, Creation of open universes from de sitter space, Nature,295 (1982), 304.CrossRefGoogle Scholar
  14. [14]
    Yu Xin, Nonlinear gravito-electrodynamics—An Eintein's dream in the Earth and the Universe, Ed. by W. Schroder, International Association of Geomagnetism and Aeronomy, Germany (1993), 473–484.Google Scholar

Copyright information

© Shanghai University of Technology (SUT) 1995

Authors and Affiliations

  • Lee Wa Tsan
    • 1
  • Yu Xin (Alfred Yu)
    • 1
  1. 1.Department of Applied MathematicsHong Kong PolytechnicHong Kong

Personalised recommendations