Applied Mathematics and Mechanics

, Volume 13, Issue 2, pp 125–134 | Cite as

A numerical calculation of dynamic buckling of a thin shallow spherical shell under impact

  • Mu Jian-chun
  • Wu Wen-zhou
  • Yang Gui-tong


Assuming the deformation of the shell has an axial symmetrical form, we transform Marguerre’s equations[1] into difference equations, and use these equations to discuss the buckling of an elastic thin shallow spherical shell subjected to impact loads. The result shows when impact load acts on the shells, a jump of the shell takes place dependent on the values λ and the critical buckling load increases with the enlargement of the loading area.

Key words

shell buckling impact 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Marguerre, K., Zur Theorie der Gekrummten Platte Groaser Formanderung,Proccedings of the Fifth International Congress of Applied Mechanics (1938), 93.Google Scholar
  2. [2]
    Humphreya, J. S. and S. R. Bodner, Dynamic buckling of shallow shell under impulsive loading,Journal of the Engineering Mechanics Division, Procceding of the American Society of Civil Engineers,88, EM2 April (1962), 17–36.Google Scholar
  3. [3]
    Budiansky, B. and R. S. Roth, Axisymmetric Dynamic Buckling of Clamped Shallow Spherical Shell, TND-1610, NASA (1962), 597–606.Google Scholar
  4. [4]
    Huang, N. C., Axisymmetric dynamic snap-through of elastic clamped shallow spherical shell,AIAA Journal,7, 2 (1969).Google Scholar
  5. [5]
    Archer, Robert R. and Charles G. Lange, Nonlinear dynamic behavior of shallow spherical shell,AIAA Journal,3, 12 (1965).Google Scholar
  6. [6]
    Stricklin, James A. and J. Edwardo Martinei, Dynamic buckling of clamped spherical caps under step pressure loading,AIAA Journal (1969).Google Scholar
  7. [7]
    Stephens, Wendell B. and Fulton Roberte, Axisymmetric static and dynamic buckling of spherical caps due to centrally distributed pressure,AIAA, J.,7, 11 (1969).Google Scholar
  8. [8]
    Johnson, D. E., and R. Grief, Dynamic response of cylindrical shell: two numerical methods,AIAA. J.,4, 3 (1966), 486–494.MATHGoogle Scholar
  9. [9]
    Simitses, G. J., Axisymmetric dynamic snap-through buckling of shallow spherical caps,AIAA. J.,5, May (1967), 1019–1021.CrossRefGoogle Scholar

Copyright information

© Shanghai University of Technology (SUT) 1992

Authors and Affiliations

  • Mu Jian-chun
    • 1
  • Wu Wen-zhou
    • 1
  • Yang Gui-tong
    • 1
  1. 1.Taiyuan University of TechnologyTaiyuan

Personalised recommendations