Skip to main content
Log in

Conversion of human interferon-β from a secreted to a phosphatidylinositol anchored protein by fusion of a 17 amino acid sequence to its carboxyl terminus

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A number of cell-surface proteins are anchored in plasma membranes by a glycosylated phosphatidylinositol (PI) moiety that is covalently attached to the carboxyl-terminal amino acid of the mature protein. We have previously reported the construction of a cDNA clone of a truncated Platelet-derived growth factor (PDGF) receptor that consists of the extracellular domain without the transmembrane and cytoplasmic domains. In the construction of the vector, a sequence of 51 base pairs (bp) from the 3′-untranslated region of the receptor cDNA was linked in frame with the external domain coding sequence. The truncated receptor protein with the peptide VTSGHCHEERVDRHDGE fused to its carboxyl terminus was covalently attached to the membrane by a PI linkage and it was released by phosphatidylinositol specific-phospholipase C (PI-PLC). When the 51 bp sequence was deleted, the external domain receptor protein was secreted into the media. To determine whether the PI linkage of the protein was due to the 17 amino acids added, the peptide was fused to the carboxyl terminus of the secreted protein human Interferon-β (hu-IFN-β). Chinese hamster ovary (CHO) cells transfected with the hu-IFN-β cDNA secreted the protein to theconditioned media, whereas CHO cells transfected with the carboxyl terminus modified-hu-IFN-β cDNA did not secrete detectable levels of protein. CHO cells expressing the carboxyl terminus modified-hu-IFN-β were treated with PI-PLC, the media and cell lysates were analyzed by SDS-PAGE after immunoprecipitation with antibodies against hu-IFN-β. The modified protein is anchored to the plasma membrane by a PI linkage and it is specifically released by PI-PLC, whereas a control preparation of CHO cells expressing wild type hu-IFN-β does not show the same pattern. The 17 amino acid peptide fused to the carboxyl terminus of IFN-β directs attachment of a PI anchor and targets the fusion protein to the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Low MG, Ferguson MAJ, Futerman AH, Silman I: Covalently attached phosphatidylinositol as a hydrophobic anchor for membrane proteins. Trends Biochem Sci 11: 212–215, 1986

    Article  CAS  Google Scholar 

  2. Cross GAM: Eukaryotic protein modification and membrane attachment via phosphatidylinositol. Cell 48: 179–181, 1987

    Article  PubMed  CAS  Google Scholar 

  3. Low MG: Biochemistry of the glycosyl-phosphatidyl inositol membrane protein anchors. Biochem J 244: 1–13, 1987

    PubMed  CAS  Google Scholar 

  4. Low MG, Saltiel AR: Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 239: 268–275, 1988

    PubMed  CAS  Google Scholar 

  5. Ferguson MAJ, Williams AF: Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Ann Rev Biochem 57: 285–320, 1988

    Article  PubMed  CAS  Google Scholar 

  6. Masterson WJ, Raper J, Doering TL, Hart GW, Englund PT: Fatty acid remodeling: A novel reaction sequence in the biosynthesis of Trypanosome glycosyl phosphatidylinositol membrane anchors. Cell 62: 73–80, 1990

    Article  PubMed  CAS  Google Scholar 

  7. Menon AK, Schwarz RT, Mayor S, Cross GAM: Cell-free synthesis of glycosyl-phosphatidylinositol precursors for the glycolipid membrane anchor of Trypanosoma brucei variant surface glycoproteins. J Biol Chem 265: 9033–9042, 1990

    PubMed  CAS  Google Scholar 

  8. Mayor S, Menon AK, Cross GAM, Ferguson MAJ, Dwek RA, Rademacher TW: Glycolipid precursors for the membrane anchor of Trypanosoma brucei variant surface glycoproteins. J Biol Chem 265: 6164–6173, 1990

    PubMed  CAS  Google Scholar 

  9. Orlean P: Dolichol phosphate mannose synthase is requiredin vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation, and N glycosylation of protein in Saccharomyces cerevisiae. Mol Cell Biol 10: 5796–5805, 1990

    PubMed  CAS  Google Scholar 

  10. Doering TL, Masterson WJ, Hart GW, Englund PT: Biosynthesis of glycosyl phosphatidylinositol membrane anchors. J Biol Chem 265: 611–614, 1990

    PubMed  CAS  Google Scholar 

  11. Yarden Y, Escobedo JA, Kuang W-J, Yang-Feng TL, Daniel TO, Tremble PM, Chen EY, Ando ME, Harkins RN, Francke U, Fried VA, Ullrich A, Williams LT. Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature (London) 323: 226–236, 1986

    Article  CAS  Google Scholar 

  12. Orchansky PL, Escobedo JA, Williams LT: Phosphatidylinositol linkage of a truncated form of the platelet-derived growth factor receptor. J Biol Chem 263: 15159–15165, 1988

    PubMed  CAS  Google Scholar 

  13. Maniatis T, Fritsch EF, Sambrook J. Moleclar Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982

    Google Scholar 

  14. Chernajovsky Y, Mory Y, Chen L, Marks Z, Novick D, Rubinstein M, Revel M Efficient constitutive production of human fibroblast interferon by Hamster cells transformed with the IFN-β1 gene fused to an SV40 early promoter. DNA 3: 297–308, 1984

    PubMed  CAS  Google Scholar 

  15. Davis LG, Dibner MD, Battey JF. Basic Methods in Molecular Biology. Elsevier/North Holland, NY, 1986, pp 123–125

    Google Scholar 

  16. Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119, 1985

    Article  PubMed  CAS  Google Scholar 

  17. Kunkel TA, Roberts JD, Zakour RA: Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods in Enzymol 154: 367–382, 1987

    CAS  Google Scholar 

  18. Vieira J, Messing J: Production of single-stranded plasmid DNA. Methods in Enzymol 153: 3–11, 1987

    CAS  Google Scholar 

  19. Kunkel TA: Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82: 488–492, 1985

    Article  PubMed  CAS  Google Scholar 

  20. Van der Eb AJ, Graham FL: Assay of transforming activity of tumor virus DNA. Methods in Enzymol 65: 826–839, 1980

    Google Scholar 

  21. Zenke M, Muñoz A, Sap J, Vennstrom B, Beug H: v-erbA Oncogene activation entails the loss of hormone-dependent regulator activity of c-erbA. Cell 61: 1035–1049, 1990

    Article  PubMed  CAS  Google Scholar 

  22. Feinberg AP, Vogelstein B: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13, 1983

    Article  PubMed  CAS  Google Scholar 

  23. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227: 680–685, 1970

    Article  CAS  Google Scholar 

  24. Merril CR, Goldman D, Sedman SA, Ebert MH: Gel protein stains: Silver stain. Science 211: 1437–1438, 1981

    PubMed  CAS  Google Scholar 

  25. Hamilton WG, Ham RG: Clonal growth of Chinese Hamster cell lines in protein-free media.In vitro 13: 537–547, 1977

    Article  PubMed  CAS  Google Scholar 

  26. Knight Jr E: Purification of human fibroblast interferon prepared in the absence of serum. Methods of Enzymol 78: 417–435, 1981

    CAS  Google Scholar 

  27. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248–254, 1976

    Article  PubMed  CAS  Google Scholar 

  28. Kenny C, Moschera JA, Stein S: Purification of human fibroblast interferon produced in the absence of serum by Cibacron Blue F3GA-Agarose and high-performance liquid chromatography. Methods in Enzymol 78: 435–447, 1981

    Article  CAS  Google Scholar 

  29. Utsumi J, Mizuno Y, Hosoi K, Okano K, Saada R, Kajitani M, Sakai I, Naruto M, Shimizu H: Characterization of four different mammalian-cell-derived recombinant human interferon-β1s. Eur J Biochem 181: 545–553, 1989

    Article  PubMed  CAS  Google Scholar 

  30. Breitbait RE, Andreadis A, Nadal-Ginard B: Alternative splicing: A ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Ann Rev Biochem 56: 467–495, 1987

    Article  Google Scholar 

  31. Mineo I, Carke PRH, Sabina RL, Holmes EW: A novel pathway for alternative splicing: Identification of an RNA intermediate that generates an alternative 5′ splice donor site not present in the primary transcript of AMPD1. Mol Cell Biol 10: 5271–5278, 1990

    PubMed  CAS  Google Scholar 

  32. Feener CA, Koenig M, Kunkel LM: Alternative splicing of human Distrophin mRNA generates isoforms of the carboxy terminus. Nature (London) 338: 509–511, 1989

    Article  CAS  Google Scholar 

  33. Fukunaga R, Sato Y, Mizushima S, Nagata S: Three different mRNAs encoding human granulocyte colony-stimulating factor receptor. Proc Natl Acad Sci USA 87: 8702–8706, 1990

    Article  PubMed  CAS  Google Scholar 

  34. Cunningham BA, Hemperly JJ, Murray BA, Prediger, EA, Brackenbury R, Edelman GM: Neural cell adhesion molecule: Structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236: 799–806, 1987

    PubMed  CAS  Google Scholar 

  35. Caras IW, Weddell GN, Davitz MA, Nussenzweig V, Martin DW Jr: Signal for attachment of a phospholipid membrane anchor in decay accelerating factor. Science 238: 1280–1283, 1987

    PubMed  CAS  Google Scholar 

  36. Caras IW, Weddell GN: Signal peptide for protein secretion directing glycophospholipid membrane anchor attachment. Science 243: 1196–1198, 1989

    PubMed  CAS  Google Scholar 

  37. Tykocinski ML, Shu H-K, Ayers DJ, Walter EI, Getty RR, Groger RK, Hauer CA, Medof ME: Clycolipid reanchoring of T-lymphocyte surface antigen CD8 using the 3′ end sequence of decay-accelerating factor's mRNA. Proc Natl Acad Sci USA 85: 3555–3559, 1988

    Article  PubMed  CAS  Google Scholar 

  38. Waneck GL, Sherman DH, Kincade PW, Low MG, Flavell RA: Molecular mapping of signals in the Qa-2 antigen required for attachment of the phosphatidylinositol membrane anchor. Proc Natl Acad Sci USA 85: 577–581, 1988

    Article  PubMed  CAS  Google Scholar 

  39. Berger J, Howard AD, Brink L, Gerber L, Hauber J, Cullen BR, Udenfriend S: COOH-terminal requirements for the correct processing of a phosphatidylinositol-glycan anchored membrane protein. J Biol Chem 263: 10016–10021, 1988

    PubMed  CAS  Google Scholar 

  40. Su B, Bothwell ALM: Biosynthesis of a phosphatidylinositol-glycan-linked membrane protein: Signals for postranslational processing of the Ly-6E antigen. Mol Cell Biol 9: 3369–3376, 1989

    PubMed  CAS  Google Scholar 

  41. Caras IW, Weddell GN, Williams SR: Analysis of the signal for attachment of a glycophospholipid membrane anchor. J Cell Biol 108: 1387–1396, 1989

    Article  PubMed  CAS  Google Scholar 

  42. Kaetzel DM, Singh N, Kennedy GC, Virgin JB, Farr G, Kitagawa Y, Nilson JH, Tartakoff AM: Complete and partial glycophospholipid anchors are found on a fusion protein consisting of luteinizing hormone β subunit followed by a carboxy-terminal domain of Thy-1. J Biol Chem 265: 15932–15937, 1990

    PubMed  CAS  Google Scholar 

  43. Singh N, Singleton D, Tartakoff AM: Anchoring and degradation of glycolipid-anchored membrane proteins by L929 versus by LM-TK mouse fibroblasts: Implications for anchor biosynthesis. Mol Cell Biol 11: 2362–2374, 1991

    PubMed  CAS  Google Scholar 

  44. Sikorav J-L, Krejci E, Massoulie J: cDNA sequences of Torpedo marmorata acetylcholinesterase: Primary structure of the precursor of a catalytic subunit; existence of multiple 5′-untranslated regions. EMBO J 6: 1865–1873, 1987

    PubMed  CAS  Google Scholar 

  45. Micanovic R, Kodukula K, Gerber LD, Udenfriend S: Selectivity at the cleavage/attachment site of phosphatidylinositol-glycan anchored membrane proteins is enzymatically determined. Proc Natl Acad Sci USA 87: 7939–7943, 1990

    Article  PubMed  CAS  Google Scholar 

  46. Kerr IM, Stark GR: The control of interferon-inducible gene expression. FEBS Lett 285: 194–198, 1991

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santillán, G.E., Sandoval, M.J., Chernajovsky, Y. et al. Conversion of human interferon-β from a secreted to a phosphatidylinositol anchored protein by fusion of a 17 amino acid sequence to its carboxyl terminus. Mol Cell Biochem 110, 181–191 (1992). https://doi.org/10.1007/BF02454197

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02454197

Key words

Navigation