Skip to main content
Log in

Glutathione reductase fromSaccharomyces cerevisiae undergoes redox interconversionin situ andin vivo

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Redox interconversion of glutathione reductase was studiedin situ withS. cerevisiae. The enzyme was more sensitive to redox inactivation in 24 hour-starved cells than in freshly-grown ones. While 5 μM NADPH or 100 μM NADH caused 50% inactivation in normal cells in 30 min, 0.75 μM NADPH or 50 μM NADH promoted a similar effect in starved cells. GSSG reactivated the enzyme previously inactivated by NADPH, ascertaining that the enzyme was subjected to redox interconversion. Low EDTA concentrations fully protected the enzyme from NADPH inactivation, thus confirming the participation of metals in such a process. Extensive inactivation was obtained in permeabilized cells incubated with glucose-6-phosphate or 6-phosphogluconate, in agreement with the very high specific activities of the corresponding dehydrogenases. Some inactivation was also observed with malate, L-lactate, gluconate or isocitrate in the presence of low NADP+ concentrations.

The inactivation of yeast glutathione reductase has also been studiedin vivo. The activity decreased to 75% after 2 hours of growth with glucono-δ-lactone as carbon source, while NADPH rose to 144% and NADP+ fell to 86% of their initial values. Greater changes were observed in the presence of 1.5 μM rotenone: enzymatic activity descended to 23% of the control value, while the NADH/NAD+ and NADPH/NADP+ ratios rose to 171% and 262% of their initial values, respectively. Such results indicate that the lowered redox potential of the pyridine nucleotide pool existing when glucono-δ-lactone is oxidized promotesin vivo inactivation of glutathione reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPIP:

2,6-Dichlorophenolindophenol

PMS:

Phenazine methosulfate

References

  1. Williams CH Jr: Flavin-containing dehydrogenases and oxidases. In: PD Boyer (ed.) The Enzymes vol XIII. Academic Press, New York, 1976, pp 89–173

    Google Scholar 

  2. Krauth-Siegel RL, Blatterspiel R, Saleh M, Schiltz E, Schirmer RH, Untücht-Grau R: Glutathione reductase from human erythrocytes. The sequences of the NADPH domain and of the interface domain. Eur J Biochem 121: 259–267, 1982

    Article  PubMed  CAS  Google Scholar 

  3. Thieme R, Pai EF, Schirmer RH, Schulz GE: Three-dimensional structure of glutathione reductase at 2 Å resolution. J Mol Biol 152: 763–782, 1981

    Article  PubMed  CAS  Google Scholar 

  4. Karplus PA, Schulz GE: Refined structure of glutathione reductase at 1.54 Å resolution. J Mol Biol 195: 701–729, 1987

    Article  PubMed  CAS  Google Scholar 

  5. Pai EF, Karplus PA, Schulz GE: Crystallographic analysis of the binding of NADPH, NADPH fragments, and NADPH analogues to glutathione reductase. Biochemistry 27: 4465–4474, 1988

    Article  PubMed  CAS  Google Scholar 

  6. Karplus PA, Pai EF, Schulz GE: A crystallographic study of the glutathione binding site of glutathione reductase at 0.3 nm resolution. Eur J Biochem 178: 693–703, 1989

    Article  PubMed  CAS  Google Scholar 

  7. Karplus PA, Schulz GE: Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2 Å resolution. J Mol Biol 210: 163–180, 1989

    Article  PubMed  CAS  Google Scholar 

  8. Pai EF Schulz GE: The catalytic mechanism of glutathione reductase as derived from X-ray diffraction analyses of reaction intermediates. J Biol Chem 258: 1752–1757, 1983

    PubMed  CAS  Google Scholar 

  9. Mata AM, Pinto MC, López-Barea J: Redox interconversion of glutathione reductase fromEscherichia coli. A study with the pure enzyme and cell-free extracts. Mol Cell Biochem 67: 65–76, 1985

    Article  PubMed  CAS  Google Scholar 

  10. Pinto MC, Mata AM, López-Barea J: Reversible inactivation ofSaccharomyces cerevisiae glutathione reductase under reducing conditions. Arch Biochem Biophys 228: 1–12, 1984

    Article  PubMed  CAS  Google Scholar 

  11. López-Barea J, Lee C-Y: Mouse-liver glutathione reductase. Purification kinetics and regulation. Eur J Biochem 98: 487–499, 1979

    Article  PubMed  Google Scholar 

  12. Pinto MC, Mata AM, López-Barea J: The redox interconversion mechanism ofSaccharomyces cerevisiae glutathione reductase. Eur J Biochem 151: 275–281, 1985

    Article  PubMed  CAS  Google Scholar 

  13. Peinado J, Florindo J, García-Alfonso C, Martínez-Galisteo E, Llobell A, López-Barea J: Metals are directly involved in the redox interconversion ofSaccharomyces cerevisiae glutathione reductase. Mol Cell Biochem 101: 175–187, 1991

    Article  PubMed  CAS  Google Scholar 

  14. Mata AM, Pinto MC, López-Barea J: Redox interconversion ofEscherichia coli glutathione reductase. A study with permeabilized and intact cells. Mol Cell Biochem 68: 121–130, 1985

    Article  PubMed  CAS  Google Scholar 

  15. Serrano R: Characterization of the plasma membrane ATPase ofSaccharomyces cerevisiae. Mol Cell Biochem 22: 51–63, 1978

    Article  PubMed  CAS  Google Scholar 

  16. Bruinenberg PM, Van Dijken JP, Scheffers WA: An enzymatic analysis of NADPH production and consumption inCandida utilis. J Gen Microbiol 129: 965–971, 1982

    Google Scholar 

  17. Bergmeyer HU, Bernt E: Lactate dehydrogenase. UV-assay with pyruvate and NADH. In: HU Bergmeyer (ed.), Methods of Enzymatic Analysis 2nd ed. Academic Press, New York, 1974, pp 574–579

    Google Scholar 

  18. Jacobson EL, Jacobson MK: Pyridine nucleotide levels as a function of growth in normal and transformed 3T3 cells. Arch Biochem Biophys 175: 627–634, 1976

    Article  PubMed  CAS  Google Scholar 

  19. Slater TF, Sawyer B: A colorimetric method for estimating the pyridine nucleotide content of small amounts of animal tissue. Nature 193: 454–456, 1962

    Article  PubMed  CAS  Google Scholar 

  20. Casazza JP, Veech RL: The content of pentose-cycle intermediates in liver in starved, fedad libitum, and meal-fed rats. Biochem J 236: 635–641, 1986

    PubMed  CAS  Google Scholar 

  21. Omachi A, Scott CB, Hegarty H: Pyridine nucleotides in human erythrocytes in different metabolic states. Biochim Biophys Acta 184: 139–147, 1969

    PubMed  CAS  Google Scholar 

  22. Ting HY, Jacobson EL, Jacobson MK: Regulation of nicotinamide adenine dinucleotide phophate levels in yeast. Arch Biochem Biophys 183: 98–104, 1977

    Article  PubMed  CAS  Google Scholar 

  23. Wimpenny JWT, Firth A: Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. J Bacteriol 111: 24–32, 1972

    PubMed  CAS  Google Scholar 

  24. López-Barea J, Bárcena JA: Redox control of glutathione and thioredoxin reductases. In: FL Crane, DJ Morre, HA Low (eds.) Plasma Membrane Oxidoreductases in Control of Animal and Plant Growth. Plenum Publishing Corp, New York, 1988, pp 349–358

    Google Scholar 

  25. López-Bárea J, Bárcena JA, Bocanegra JA, Florindo J, García-Alfonso C, López-Ruiz A, Martínez-Galisteo E, Peinado J: Structure, mechanism, functions, and regulatory properties of glutathione reductase. In: J Viña (ed.) Glutathione: Metabolism and Physiological Functions. CRC Press, Boca Ratón, 1990, pp 105–116

    Google Scholar 

  26. Gancedo JM, Gancedo C: Concentrations of intermediary metabolites in yeast. Biochimie 55: 205–211, 1973

    PubMed  CAS  Google Scholar 

  27. Rydström J: Assay of nicotinamide nucleotide transhydrogenases in mammalian, bacterial, and reconstituted systems. Methods Enzymol 55: 261–275, 1979

    Article  PubMed  Google Scholar 

  28. Zubay G: Biochemistry. Addison-Wesley Publishing Co, New York, 1983, pp 376–379

    Google Scholar 

  29. Sies H: Biochemistry of oxidative stress. Angew Chem Int Ed Engl 25: 1058–1071, 1986

    Article  Google Scholar 

  30. Llobell A, López-Ruiz A, Peinado J, López-Barea J: Glutathione reductase directly mediates the stimulation of yeast glucose-6-phosphate dehydrogenase by GSSG. Biochem J 249: 293–296, 1988

    PubMed  CAS  Google Scholar 

  31. Meister A, Anderson ME: Glutathione. Annu Rev Biochem 52: 711–760, 1983

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peinado, J., Florindo, J. & López-Barea, J. Glutathione reductase fromSaccharomyces cerevisiae undergoes redox interconversionin situ andin vivo . Mol Cell Biochem 110, 135–143 (1992). https://doi.org/10.1007/BF02454190

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02454190

Key words

Navigation