Skip to main content
Log in

Generalization of some results of H. burkill and L. mirsky and some related results

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Biernacki, Sur une inegalité entre les intégrales due à Tschébyscheff,Ann. Univ. Mariae Curie-Skŀodowska Sect. A 5 (1951), 23–29.MR 15-294

    MathSciNet  Google Scholar 

  2. H. D. Brunk, Integral inequalities for functions with nondecreasing increments,Pacific. J. Math. 14 (1964), 783–793.MR 30 # 4877

    MATH  MathSciNet  Google Scholar 

  3. H. Burkill andL. Mirsky, Comments on Chebysheff's inequality,Period. Math. Hungar. 6 (1975), 3–16.MR 51 # 5870

    Article  MATH  MathSciNet  Google Scholar 

  4. P. M. Vasić andJ. E. Pečaric, On the Jensen inequality,Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 634-677 (1979), 50–54.MR 81h: 26016

    Google Scholar 

  5. P. M. Vasić andJ. E. Pečarić, The Čebyšev inequality as a function of the index set,Univ. Beograd. Publ. Elektrotechn. Fak. Ser. Mat. Fiz. No. 716-734 (1981), 91–94.MR 83d: 26010

    Google Scholar 

  6. P. M. Vasić andJ. E. Pečarić, Comments on Čebyšev's inequality,Period. Math. Hungar. 13 (1982), 247–251.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pečarić, J.E. Generalization of some results of H. burkill and L. mirsky and some related results. Period Math Hung 15, 241–247 (1984). https://doi.org/10.1007/BF02454173

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02454173

AMS (MOS) subject classifications (1980)

Navigation