Advertisement

Periodica Mathematica Hungarica

, Volume 15, Issue 3, pp 181–187 | Cite as

Note on the equationf(x)g(y)=h(ax+by)k(cx+dy) and generalized quadratic polynomials

  • S. Haruki
Article

AMS (MOS) subject classification (1980)

Primary 39B30 

Key words and phrases

Functional equations Additive functions Symmetric bi-additive functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. A. Baker, On the functional equation\(f(x)g(y) = \mathop \Pi \limits_{i = 1}^n h_i (a_i x + b_i y)\),Aequationes Math. 11 (1974), 154–162.M R 51 # 10932zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    I. Ecsedi, On a functional equation which contains a real-valued function of vector variable,Period. Math. Hungar. 5 (1974), 333–342.M R 51 # 6204zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    I. Ecsedi, Azf(ax+by)g(cx+dy)=h(x)k(y) függvényegyenlet nem folytonos megoldásainak egy osztályáról (On a class of the non-continuous solutions of the functional equationf(ax+by)g(cx+dy)=h(x)k(y)),Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 22 (1973), 3–10. (In Hungarian)MR 51 # 6203MathSciNetGoogle Scholar
  4. [4]
    K. Lajkó, On the functional equationf(x)g(y)=h(ax+by)k(cx+dy), Period. Math. Hungar. 11 (1980), 187–195.MR 81k: 39007zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Mazur andW. Orlicz, Grundlegende Eigenschaften der polynomischen Operationen, I,Studia Math. 5 (1964), 50–68.Zbl 13, 210Google Scholar
  6. [6]
    M. A. McKiernan, On vanishingn-th ordered differences and Hamel bases,Ann. Polon. Math. 19 (1967), 331–336.MR 36 # 4183zbMATHMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 1984

Authors and Affiliations

  • S. Haruki
    • 1
  1. 1.Department of Pure MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations