Il Nuovo Cimento D

, Volume 17, Issue 10, pp 1165–1179 | Cite as

Coordinate space form of interacting reference response function ofd-dimensional jellium

  • R. Fantoni
  • M. P. Tosi
Article
  • 15 Downloads

Summary

The interacting reference response functionX I [3](k) of three-dimensional jellium ink space was defined by Niklasson in terms of the momentum distribution of the interacting electron assembly. Here the Fourier transformF I [d](r) ofX I [d] (k) is studied for the jellium model withe 2/r interactions in dimensionalityd=1,2 and 3, in an extension of recent work by Holas, March and Tosi for the cased=3. The small-r and large-r forms ofF I [d] (r) are explicitly evaluated from the analytic behaviour of the momentum distributionn d(p). In the appendix, a model ofn d (p) is constructed which interpolates between these limits.

PACS. 71.45

Collective effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Singwi K. S. andTosi M. P.,Solid State Phys.,36 (1981) 177.CrossRefGoogle Scholar
  2. [2]
    Niklasson G.,Phys. Rev. B,10 (1974) 3052.CrossRefADSGoogle Scholar
  3. [3]
    Holas A., inStrongly Coupled Plasma Physics, edited byF. J. Rogers andH. E. DeWitt (Plenum, New York, N.Y.) 1986, p. 463.Google Scholar
  4. [4]
    March A. M. andTosi M. P.,Philos. Mag. B,72 (1995) 295.Google Scholar
  5. [5]
    Holas A., March A. H. andTosi M. P., to be published inPhys. Chem. Liq.Google Scholar
  6. [6]
    Fantoni R. andTosi M. P., to be published inPhysica B.Google Scholar
  7. [7]
    Santoro G. E. andGiuliani G. F.,Phys. Rev. B,37 (1988) 4813.CrossRefADSGoogle Scholar
  8. [8]
    Pathak K. N. andVashishta P.,Phys. Rev. B,7 (1973) 3649.CrossRefADSGoogle Scholar
  9. [9]
    Iwamoto N.,Phys. Rev. A,30 (1984) 3289.CrossRefADSGoogle Scholar
  10. [10]
    Gradshtein I. S. andRyzhik I.,Tables of Integrals, Series and Products (Academic, New York, N.Y.) 1980.Google Scholar
  11. [11]
    March N. H. andMurray A. M.,Phys. Rev.,120 (1960) 830.MATHMathSciNetCrossRefADSGoogle Scholar
  12. [12]
    Tanatar B. andCeperley D. M.,Phys. Rev. B,39 (1989) 5005.CrossRefADSGoogle Scholar
  13. [13]
    Ortiz G. andBallone P.,Phys. Rev. B,50 (1994) 1391.CrossRefADSGoogle Scholar
  14. [14]
    Kimball J. C.,Phys. Rev. A,7 (1973) 1648.CrossRefADSGoogle Scholar
  15. [15]
    Kimball J. C.,J. Phys. A,8 (1975) 1513.CrossRefADSGoogle Scholar
  16. [16]
    Rajagopal A. K. andKimball J. C.,Phys. Rev. B,15 (1977) 2819.CrossRefADSGoogle Scholar
  17. [17]
    Lighthill M. J.,Introduction to Fourier Analysis and Generalised Functions (University Press, Cambridge) 1958.MATHGoogle Scholar
  18. [18]
    Watson G. S.,Theory of Bessel Functions (University Press, Cambridge) 1952.Google Scholar

Copyright information

© Società Italiana di Fisica 1995

Authors and Affiliations

  • R. Fantoni
    • 1
  • M. P. Tosi
    • 1
  1. 1.Instituto Nazionale di Fisica della Materia and Classe di ScienzeScuola Normale SuperiorePisaItaly

Personalised recommendations