Il Nuovo Cimento D

, Volume 9, Issue 7, pp 757–780 | Cite as

Noise-sensitive hysteresis loops around period-doubling bifurcation points

  • P. Pierański
  • J. Malecki
Article

Summary

The noise-sensitive hysteresis loops observed in the bouncing-ball model are described. The phenomenon is analysed within the formalisms of the square map and the dissipative standard mapping. The notion of steady-state paths is introduced. A linear approximation of the simplest steady-state path is found.

PACS. 05.40

Fluctuation phenomena, random processes and Brownian motion 

Riassunto

Si descrivono gli anelli d’isteresi sensibili al rumore osservati nel modello della palla che rimbalza. Il fenomeno è analizzato nell’ambito dei formalismi della mappa quadrata e della funzione dissipativa standard. S’introduce la nozione di percorsi dello stato stazionario. Si trova un’approssimazione lineare del percorso piú semplice dello stato stazionario.

Резюме

Описываются петли гистерезиса, чувствительные к шуму, которые наблюдаются в модели подскакивающего мяча. Это явление анализируется в рамках формализма отображения квадрата и формализма диссипативного стандартного отображения. Вводится понятие установившихся траекторий. Получается линейная аппроксимация для простейших установившихся траекторий.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    M. Franaszek andP. Pierański:Can. J. Phys.,63, 488 (1985).ADSGoogle Scholar
  2. (2).
    R. Kapral andP. Mandel:Phys. Rev. A,32, 1076 (1985).CrossRefADSGoogle Scholar
  3. (3).
    P. Pierański:J. Phys. (Paris),44, 573 (1983);N. B. Tufillaro andA. Albano:Am. J. Phys. (in press).Google Scholar
  4. (4).
    P. Pierański, M. Franaszek andZ. Kowalik:J. Phys. (Paris),46, 681 (1985);P. Pierański andR. Bartolino:J. Phys. (Paris),46, 687 (1985).Google Scholar
  5. (5).
    In real experiments, the dynamical variable is said to reach the stationary value if its further evolution is no longer registrable.Google Scholar
  6. (6).
    K. Wiesenfeld:J. Stat. Phys.,38, 1071 (1985).MathSciNetCrossRefGoogle Scholar
  7. (7).
    C. Jeffries andK. Wiesenfeld:Phys. Rev. A,31, 1077 (1985).B. Derighetti, M. Ravani, R. Stoop, P. F. Meier, E. Brun andR. Badii:Phys. Rev. Lett.,55, 1746 (1985).CrossRefADSGoogle Scholar
  8. (8).
    K. Wiesenfeld:Phys. Rev. A,32, 1744 (1985).MathSciNetCrossRefADSGoogle Scholar
  9. (9).
    P. Pierański andJ. Maŀecki:Phys. Rev. A,34, 582 (1986).CrossRefADSGoogle Scholar
  10. (10).
    P. Coullet andJ. Tresser:J. Phys. (Paris), C-5, 25 (1978);M. Feigenbaum:J. Stat. Phys.,19, 25 (1978);P. Collet andJ.-P. Eckmann:Iterated Maps on the Interval as Dynamical Systems (Birkhauser, Boston, Mass., 1980).Google Scholar
  11. (11).
    B. Morris andF. Moss:Phys. Lett. A,118, 117 (1986).MathSciNetCrossRefADSGoogle Scholar
  12. (12).
    This stays in disagreement with the conclusion reached in ref. (2) that beyond λ1B there is «... an oscillatory growth away from the “adiabatic” solution 1−1/λ».Google Scholar
  13. (13).
    W. Jeżewski: private communication.Google Scholar
  14. (14).
    For λ swept down the bifurcation is said to occur when |x t+1x t| falls down below the predefined threshold value Δx.Google Scholar
  15. (15).
    Solution (6) can be extracted also from relations obtained in ref.(2), but the approximations one must make to achieve the goal are not obvious.Google Scholar
  16. (16).
    In the case of the two-dimensional mapping (15) one must pay attention to the starting (θ 0) conditions, since, if these are not properly chosen, the {θ t,υ t} sequence may escape from the basin of attraction of theM (1) mode.Google Scholar
  17. (17).
    According to the continuous approximation approach described in ref.(9), one can imagine that the dynamical variable enters theλ >λ B region «sitting on the top of a hill building up in the middle of a potential well». The noise-sensitive dynamics of such an unstable system was analysed byF. T. Arecchi, A. Politi andL. Ulivi:Nuovo Cimento B,71, 119 (1982).Google Scholar
  18. (18).
    G. Broggi, A. Colombo, L. A. Lugiato andP. Mandel:Phys. Rev. A,33, 3635 (1986).CrossRefADSGoogle Scholar
  19. (19).
    R. Mannella, F. Moss andP. V. E. McClintock: unpublished.Google Scholar
  20. (20).
    E. Arimondo, D. Dangoisse, L. Fronzoni, O. Incani andN. K. Rahman:International Laser Science Conference (Seattle, 1986).Google Scholar
  21. (21).
    L. Fronzoni, F. Moss andP. V. E. McClintock:Phys. Rev. A (to appear).Google Scholar

Copyright information

© Società Italiana di Fisica 1987

Authors and Affiliations

  • P. Pierański
    • 1
    • 2
  • J. Malecki
    • 2
  1. 1.Dipartimento di FisicaUniversità della CalabriaRoges di RendeItalia
  2. 2.Institute of Molecular PhysicsPolish Academy of SciencesPoznańPoland

Personalised recommendations