Skip to main content
Log in

Threshold value for diagnosis of chaotic nature of the data obtained in nonlinear dynamic analysis

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this paper surrogate data method of phase-randomized is proposed to identify the random or chaotic nature of the data obtained in dynamic analysis. The calculating results validate the phase-randomized method to be useful as it can increase the extent of accuracy of the results. And the calculating results show that threshold values of the random timeseries and nonlinear chaotic timeseries have marked difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henry D. I. Abarbanel, Prediction in chaotic nonlinear systems methods for timeseries with broadband Fourier spectra,Phys. B,5 (1991), 1347–1375.

    MATH  MathSciNet  Google Scholar 

  2. J. Luis Cabrera and F. Javier, Numerical analysis of transient behavior in the discrete random Logistic equation with delay,Phys. Lett. A 197 (1995) 19–24.

    Article  MATH  MathSciNet  Google Scholar 

  3. Peter Grassberger, Fininte sample corrections to entropy and dimension estimates,Phys. Lett. A,125 (1988), 369–373.

    Article  MathSciNet  Google Scholar 

  4. James Theiler, Stephen Eubank, et al., Testing for nonlinearity in time series the method of surrogate data,Physica D,58, (1992), 77–94.

    Article  Google Scholar 

  5. Dean Prichard, The correlation dimension of differenced data,Phys. Lett. A,191 (1994), 245–250.

    Article  Google Scholar 

  6. James Theiler, Spurious dimension from correlation algorithms applied to limited time series data,Phys. Rev. A,34 (1986), 2427–2432.

    Article  Google Scholar 

  7. S. Rombouts, R. Keunen, Investigation of nonlinear structure in multichannel EEG.Phys. Lett. A,202 (1995), 352–358.

    Article  Google Scholar 

  8. Matthew B. Kennel and Strven Isabelle, Method to distinguish possible chaos from colored noise and to determine embedding parameters,Phys. Rev. Lett. A,46 (1992), 3111–3118.

    Google Scholar 

  9. P. E. Rapp and A. M. Albano, Filtered noise can mimic low-dimensional chaotic attractors,Phys. Rev. E,47 (1993), 2289–2297.

    Article  Google Scholar 

  10. Dean Prichard, Generating surrogate data for time series with several simultaneously measured variables,Phys. Rev. Lett.,191 (1994), 230–245.

    Google Scholar 

  11. P. E. Rapp and A. M. Albano, Phase-randomized surrogates can produce spurious identifications of non-random structure,Phys. Lett. A,192 (1994), 27–33.

    Article  Google Scholar 

  12. M. Casdagli and Alistair Mees, Modeling chaotic motions of a string from experimental data,Phys. Rev. E,54 (1992), 303–328.

    Google Scholar 

  13. P. E. Rapp and A. M. Albano, Predicting chaotic time series,Phys. Rev. E,47 (1993), 2289–2297.

    Article  Google Scholar 

  14. Eric J. Kostelich, Problems in estimating dynamics from data,Phys. D,58 (1992), 138–152.

    Article  MathSciNet  Google Scholar 

  15. S. J. Schiff and T. Chang, Information transport in temporal systems,Phys. Rev. Lett. A,67 (1992), 378–393.

    Google Scholar 

  16. James Theiler, Some comments on the correlation dimension of noise,Phys. Lett. A,155 (1991), 480–493.

    Article  MathSciNet  Google Scholar 

  17. J. Timonen and H. Koskinen, An improved estimator of dimension and some comments on providing confidence intervals,Geophys. Res. Lett.,20 (1993), 1527–1536.

    Google Scholar 

  18. D. Prichard and C. P. Price, Reconstructing attractors from scalar time series: A comparison of singular system and redundancy criteria.Geophys. Res.,20 (1993), 2817–2825.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junhai, M., Yushu, C. & Zengrong, L. Threshold value for diagnosis of chaotic nature of the data obtained in nonlinear dynamic analysis. Appl Math Mech 19, 513–520 (1998). https://doi.org/10.1007/BF02453406

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02453406

Key words

Navigation