International Journal of Anthropology

, Volume 13, Issue 3–4, pp 265–273 | Cite as

Nutrients that influence erythrocyte redox status and adaptation at the G6PD locus

  • L. S. Greene
Article
  • 10 Downloads

Key Words

Malaria glucose-6-phosphate dehydrogenase deficiency biocultural adaptation dietary adaptation genetic adaptation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arese P., De Flora A., 1990.Pathophysiology of hemolysis in glucose-6-phosphate dehydrogenase deficiency. Seminars in Hematology, 27: 1–40.Google Scholar
  2. Bothwell T.H., Seftel H., Jacobs, P., Torrance J.D., Baumslag N., 1964.Iron overload in Bantu subjects. Studies on the availability of iron in Bantu beer. American Journal of Clinical Nutrition, 14: 47–51.Google Scholar
  3. Bothwell T.H., Charlton R.W., Cook J.D., Finch C.A., 1979.Iron metabolism in man, Oxford University Press, Oxford, 156–174.Google Scholar
  4. Chevion M., Navok T., Glaser G., Mager, J., 1982.The chemistry of favism-inducing compounds. European Journal of Biochemistry, 127: 405–409.CrossRefGoogle Scholar
  5. Chevion M., 1988.A site-specific mechanism for free radical induced biological damage: the essential role of redox-active transition metals. Free Radical Biology and Medicine, 5: 27–37.CrossRefGoogle Scholar
  6. Chevion M., 1991.Protection against free radical-induced and transition metal mediated damage: the use of “pull” and “push” mechanisms. Pree Radical Research Communications, 12–13: 691–696.Google Scholar
  7. Clark I.A., Cowden W.B., Hunt N.M., Maxwell L.E., Mackie E.J., 1984.Activity of divicine in Plasmodium vinckei-infected mice has implications for treatment of favism and epidemiology of G6PD deficiency. British Journal of Haematology, 57: 479–487.Google Scholar
  8. Damonte G., Guida L., Sdraffa A. et al., 1992.Machanisms of perturbation of erythrocyte calcium homeostasis in favism. Cell Calcium, 13: 649–658.CrossRefGoogle Scholar
  9. Destro-Bisol G., Giardina B., Sansonetti B., Spedini G., 1996.Interaction between oxidized hemoglobin and the cell membrane: a common basis for several falciparum malaria-infection by oxidantsensitive host erythrocytes. Nature, 264: 758–760.Google Scholar
  10. Etkin N.L., 1997.Plants as antimalarial drugs: relation to G6PD deficiency and evolutionary implications. In: Adaptation to malaria: the interaction of biology and culture, L.S. Greene, and M.E. Danubio (eds), Gordon and Breach, Amsterdam, 139–176.Google Scholar
  11. Golenser J., Miller J., Spira D.T. et al., 1988.Inhibition of the intraerythrocytic development of Plasmodium falciparum in glucose-6-phosphate deficient erythrocytes is enhanced by oxidants and by crisis form factor. Tropical Medicine and Parasitology, 39: 272–276.Google Scholar
  12. Golenser J., Chevion M., 1989.Oxidant stress and malaria: host-parasite interrelationships in normal and abnormal erythrocytes. Seminars in Hematology, 26: 313–325.Google Scholar
  13. Golenser J., Marva E., Har-El R. et al., 1991.Induction of oxidant stress by iron available in adva forms of Plasmodium falciparum. Free Radical Research Communications, 12–13: 639–643.Google Scholar
  14. Golenser J., 1997.Malaria and blood genetic disorders with special respect to glucose-6-phosphate dehydrogenase (G6PD) deficiency. In: Adaptation to malaria: the interaction of biology and culture, L.S. Greene and M.E. Danubio (eds), Gordon and Breach, Amsterdam, 127–137.Google Scholar
  15. Gordeuk, V.R., Boyd R.D., Brittenham G.M., 1986.Dietary iron overload persists in rural sub-Saharan African. Lancet, i: 1310–1313.CrossRefGoogle Scholar
  16. Gordeuk V., Mukiibi J., Hasstedt S.J., Samowitz W., Edwards C.Q., West G., Ndambire S., Emmanuak J., Nkanza N., Chapanduka Z., Randall M., Boone P., Romano P., Martell R.W., Yamashita T., Effler P., Brittenham G., 1992.Iron overload in Africa. Interaction between a gene and dietary iron content. New England Journal of Medicine 326: 95–100.CrossRefGoogle Scholar
  17. Gordeuk V.R., Thuma P.E., Brittenham G.M., 1994.Iron chelation therapy for malaria. In: C. Hershko, A.M. Konijn, and P. Aisen (eds), Progress in iron research. Plenum, New York, 371–383.Google Scholar
  18. Greene L.S., 1993.G6PD deficiency as protection against falciparum malaria: an epidemiologic critique of population and experimental studies. Yearbook of Physical Anthropology, 37: 153–178.CrossRefGoogle Scholar
  19. Har-El R., Marva E., Chevion M., Golenser J., 1993.Is hemin responsible for the susceptibility of plasmodia to oxidant stress?. Free Radical Reearchs Communications, 18: 279–290.CrossRefGoogle Scholar
  20. Har-El R. and Chevion M., 1997.Iron and P. falciparum: double edged roles in parasite development. In: Adaptation to malaria: the interaction of biology and culture, L.S. Greene and M.E. Danubio (eds), Gordon and Breach, Amsterdam, 103–126.Google Scholar
  21. Hershko C., 1989.Mechanism of iron toxicity and its possible role in red cell membrane damage. Seminars in Hematology, 26: 277–285.Google Scholar
  22. Jackson L.C., Chandler J.P., Jackson R.T., 1986.Inhibition and adaptation of red cell glucose-6-phosphate dehydrogenase in vivo to chronic sublethal dietary cyanide in an animal model. Human Biology, 85: 67–77.Google Scholar
  23. Jackson F., 1997.Ecological modeling of human-plant-parasite coevolutionary triads: theoretical perspectives on the interrelationships of human Hb S, G6PD, Manihot esculenta, Vicia faba, and Plasmodium falciparum. In: Adaptation to malaria: the interaction of biology and culture, L.S. Greene and M.E. Danubio (eds), Gordon and Breach, Amsterdam, 177–207.Google Scholar
  24. Kar S., Seth S., Seth P.K., 1992.Prevalence of malaria in Ao Nagas and its association with G6PD and HbE. Human Biology, 64: 187–197.Google Scholar
  25. Katz S.H., Schall J., 1979.Fava bean consumption and biocultural evolution. Medical Anthropology, 3: 459–476.CrossRefGoogle Scholar
  26. Luzzatto L., Battistuzzi G., 1985.Glucose-6-phosphate dehydrogenase. Advances in Medical Genetics, 14: 217–329.Google Scholar
  27. Lytton S.D., Loyevsky A., Libman J., Mester B., Shanzer A., Cabantchik Z.I., 1994.The biochemical basis for the selective antimalarial action of iron chelators on Plasmodium falciparum parasitized cells. In: Progress in iron research, C. Hershko, A.M. Konijn, and P. Aisen (eds), Plenum, New York, 385–397.Google Scholar
  28. Mager J., Glaser G., Razin A., Izak G., Bien S., and Noam J., 1965.Metabolic effects of pyrimidines derived from fava bean glycosides on human erythrocytes deficient in glucose-6-phosphate dehydrogenase. Biochemical and Biophysical Research Communications, 20: 235.CrossRefGoogle Scholar
  29. Marva E., Cohen A., Saltman P. et al., 1989.Deleterious synergistic effects of ascorbate and copper on the development of Plasmodium falciparum: an in vitro study in normal and G6PD-deficient erythrocytes. International Journal of Parasitology, 19: 779–785.CrossRefGoogle Scholar
  30. Murray M.J., Murray A.B., Murray N.J., Murray M.B., 1975.Refeeding malaria and hyperferremia. Lancet, i: 653–654.CrossRefGoogle Scholar
  31. Murray M.J., Murray A.B., 1977.Starvation suppression and refeeding activation of infection: an ecological necessity?. Lancet, i: 123–125.CrossRefGoogle Scholar
  32. Murray M.J., Murray A.B., Murray M.B., Murray C.J., 1978.The adverse effect of iron repletion on the course of certain infections. British Medical Journal, 2: 1113–1115.CrossRefGoogle Scholar
  33. Oppenheimer S.J., Gibson F.D., Macfarlane S.B., Moody J.B., Harrison C., Spencer A., Bunari O., 1986.Iron supplementation increases prevalence and effects of malaria: report on clinical studies in Papua New Guinea. Transactions of the Royal Society of Tropical Medicine and Hygiene, 80: 603–612.CrossRefGoogle Scholar
  34. Roth E., Schulman S., 1988.The adaptation of Plasmodium falciparum to oxidative stress in G6PD deficient human erythrocytes. British Journal of Haematology, 70: 363–367.Google Scholar
  35. Ruwende C., Khoo S.C., Snow R.W., Yates S.N.R., Kwiatkowski D., Gupta A., Warn P., Allsopp C.E.M., Gilbert S.C., Peschu N., Newbold C.I., Greenwood B.M. Marsh K., 1995.Natural protection of hemi-and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature, 376: 246–249.CrossRefGoogle Scholar
  36. Ruwende C., Khoo S.C., Snow R.W., Yates S.N.R., Kwiatkowski D., Gupta A., Warn P., Allsopp C.E.M., Gilbert S.C., Peschu N., Newbold C.I., Greenwood B.M., Marsh K., 1997.Protection against severe malaria for glucose-6-phosphate dehydrogenose deficiency hemizygotes and heterozygotes. In: Adaptation to malaria: the interaction of biology and culture, L.S. Greene and M.E. Danubio (eds), Gordon and Breach, Amsterdam, 73–86.Google Scholar
  37. Scott M. D., Eaton J.W., 1997.Parasite-mediated progeria: a possible mechanism for antimalarial action of G-6-PD deficient erythrocytes. In: Adaptation to malaria: the interaction of biology and culture, L.S. Greene and M.E. Danubio (eds), Gordon and Breach, Amsterdam, 89–102.Google Scholar
  38. Zer H., Freedman J.H., Peisach J., Chevion M., 1991.Inverse correlation between resistance towards copper and towards the redox-cycling compound paraquat: a study in copper-tolerant hepatocytes in tissue culture. Free Radical Biology and Medicine, 11: 9–16.CrossRefGoogle Scholar

Copyright information

© International Institute for the Study of Man 1998

Authors and Affiliations

  • L. S. Greene
    • 1
  1. 1.Department of AnthropologyUniversity of MassachusettsBoston

Personalised recommendations