Il Nuovo Cimento D

, Volume 13, Issue 6, pp 765–778 | Cite as

Stability of magnetohydrodynamic stratified shear flows

  • S. Parhi
  • G. Nath


The linear stability of a stratified shear flow of a perfectly conducting bounded fluid in the presence of a magnetic field aligned with the flow and buoyancy forces has been studied under Boussinesq approximation. A new upper bound has been obtained for the range of real and imaginary parts of the complex wave velocity for growing perturbations. The upper bound depends on minimum Richardson number, wave number, Alfvén velocity and basic flow velocity. Höiland's necessary criterion for instability of hydrodynamic stratified homogeneous shear flow is modified and its analog for nonhomogeneous magnetohydrodynamic cases is derived. Finally the upper bound for the growth rate ofKC i and its variants, whereK is the wave number andC i the imaginary part of complex wave velocity, is derived as the necessary condition of instability. All estimates remain valid even when the minimum richardson numberJ 1, for some practical problems, exceeds 1/4 for growing perturbations.

PACS 47.20.Ft

Instabilities of shear flows 

PACS 47.55.Hd

Stratified flow 

PACS 47.65

a-Magnetohydrodynamics and electrohydrodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. G. Drazin andW. H. Reid:Hydrodynamic Stability (Cambridge University Press, Cambridge, 1982).MATHGoogle Scholar
  2. [2]
    R. Fjörtoft:Geophys. Publ.,17 (6), 1 (1950).Google Scholar
  3. [3]
    D. D. Joseph:Stability of Fluid Motion, Vol. 1 and 2 (Springer-Verlag, Berlin, 1976).Google Scholar
  4. [4]
    E. Hölland:Geophys. Publ.,18 (9), 1 (1953).Google Scholar
  5. [5]
    S. A. Thorpe:J. Fluid Mech.,36, 673 (1969).MATHCrossRefADSGoogle Scholar
  6. [6]
    C. S. Yih:Stability of waves in stratified flows, inProceedings of the Eighth Symposium of Naval Hydrodynamics (Pasadena, Cal., 1970), p. 219.Google Scholar
  7. [7]
    C. S. Yih: inNonlinear Waves, edited byS. Leibovich andA. R. Seebas (Cornell University Press, 1974), Chapt. X.Google Scholar
  8. [8]
    L. N. Howard:J. Fluid Mech.,10, 509 (1961).MATHMathSciNetCrossRefADSGoogle Scholar
  9. [9]
    G. T. Kochar andR. K. Jain:J. Fluid Mech.,91, 489 (1979).MATHMathSciNetCrossRefADSGoogle Scholar
  10. [10]
    Yu. N. Makov andYu. A. Stepanyants:J. Fluid Mech.,140, 1 (1984).MATHMathSciNetCrossRefADSGoogle Scholar
  11. [11]
    M. Subbiah andR. K. Jain:Indian J. Pure Appl. Math.,18 (11), 1016 (1987).MATHGoogle Scholar
  12. [12]
    L. F. Richardson:Proc. R. Soc. London Ser. A,97, 354 (1920).ADSGoogle Scholar
  13. [13]
    L. Prandtl:Vortrage aus dem Gebiete der Aerodynamik und Verwandten Gebieten (Springer, Berlin, 1930), p. 1.Google Scholar
  14. [14]
    G. I. Taylor:Rapp. P.-V. Reun. Cons. Permanent Int. Explor. Mer,76, 35;Sci. Pap.,2, 240 (1931).Google Scholar
  15. [15]
    L. Prandtl:Führer durch die Strömungslehre (Vieweg, Braunschweig, 1942), p. 337;Essentials of Fluid dynamics (English translation of 1949 edition ofFührer durch die Strömungslehre) (Hafner, New York, N.Y., 1952), p. 381.Google Scholar
  16. [16]
    J. W. Miles:J. Fluid. Mech.,10, 496 (1961).MATHMathSciNetCrossRefADSGoogle Scholar
  17. [17]
    S. Chandrashekhar:Hydrodynamic and Hydromagnetic Instability (Oxford University Press (Clarendon), London and New York, N.Y., 1961).Google Scholar
  18. [18]
    H. D. I. Abarbanel, D. D. Holm, J. E. Marsden andT. Ratiu:Phys. Rev. Lett.,52 (26), 2352 (1984).MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    V. I. Arnold:Dokl. Mat. Nauk SSSR,162 (5), 773 (1965).MATHGoogle Scholar
  20. [20]
    H. D. I. Abarbanel, D. D. Holm, J. E. Marsden andT. Ratiu:Philos. Trans. R. Soc. London,318, 349 (1986).MATHMathSciNetADSGoogle Scholar
  21. [21]
    J. Miles:Phys. Fluids,29 (10), 3470 (1986).MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    L. N. Howard andA. S. Gupta:J. Fluid Mech.,14, 463 (1962).MATHMathSciNetCrossRefADSGoogle Scholar
  23. [23]
    B. K. Shivamoggi andL. Debnath:Acta Mechanica,68, 33 (1987).MATHCrossRefGoogle Scholar
  24. [24]
    J. I. Metcalf andD. Atlas:Boundary Layer Met.,4, 7 (1973).CrossRefADSGoogle Scholar
  25. [25]
    D. A. Collins andS. A. Maslowe:J. Fluid Mech.,191, 465 (1988).MathSciNetCrossRefADSGoogle Scholar
  26. [26]
    J. C. R. Hunt:Proc. R. Soc. London Ser. A,293, 342 (1966).ADSGoogle Scholar
  27. [27]
    S. A. Maslowe: inHydrodynamic Instabilities and the Transition to Turbulence, edited byH. L. Swinney andJ. P. Gollub (Springer-Verlag, Berlin, 1981), Chapt. 7.Google Scholar
  28. [28]
    D. H. Sattinger:SIAM J. Appl. Math.,15, 419 (1967).MATHMathSciNetCrossRefGoogle Scholar
  29. [29]
    P. G. Drazin andL. N. Howard:Adv. Appl. Mech.,9, 1 (1966).CrossRefGoogle Scholar
  30. [30]
    P. G. Gossard andW. H. Hooke:Waves in the Atmosphere (Elsevier, 1975).Google Scholar
  31. [31]
    J. S. Turner:Buoyancy Effects in Fluids (Cambridge University Press, 1973).Google Scholar

Copyright information

© Società Italiana di Fisica 1991

Authors and Affiliations

  • S. Parhi
    • 1
  • G. Nath
    • 1
  1. 1.Department of Applied MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations