Il Nuovo Cimento D

, Volume 3, Issue 1, pp 121–136 | Cite as

Piecewise-linear-category approach to entanglement

  • C. Agnes
  • M. Rasetti
Article
  • 12 Downloads

Summary

The entanglement between chains imposes a topological constraint which makes the functional integral description of a system of loops yet completely open. The problem is here formulated in the sense of piecewise linear category, leading to an algorithm viable for either analytical or numerical evaluation of the generating function. For simplicity only the two-loop case is discussed.

PACS. 36.20

Macromolecules and polymer moledules 

PACS. 02.30

Function theory analysis 

Riassunto

L'aggrovigliamento fra le catene costituisce un vincolo topologico che rende la descrizione in termini di integrali funzionali di un sistema di oggetti lineari estesi chiusi un problema ancora completamente aperto. Tale problema è qui formulato nel senso della categoria PL (lineare a tratti), ciò che porta ad un algoritmo che consente la valutazione analitica o numerica della funzione generatrice. Per semplicità si discute solo il caso di un sistema di due catene.

Резюме

Скрученность между цепями предполагает топологическое ограничение, которое делает описание системы петеля в терминах функциональных интегралов полностью открытой проблемой. В этой работе эта проблема формулируется с помощью кусочно-линейных категорий, предложенный алгоритм приводит либо к аналитическому, либо численному вычислению производящей функции. Для простоты обсуждается случай только двух петель.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    P. A. M. Dirac:Proc. R. Soc. London, Ser. A,133, 60 (1931);Phys. Rev.,74, 817 (1948). For the discussion of the equation of motion for the loop averages in lattice gauge theories see alsoA. Neveau andJ. Gervais:Phys. Lett. B,80, 255 (1979);Y. Nambu:Phys. Lett. B,80., 372 (1979);A. N. Polyakov:Phys. Lett. B,82, 247 (1979).MATHADSGoogle Scholar
  2. (2).
    M. Rasetti andT. Regge:Physica A,80, 217 (1975);F. W. Wiegel:Physica,65, 321 (1973).MathSciNetCrossRefADSGoogle Scholar
  3. (3).
    S. F. Edwards:Proc. Phys. Soc.,91, 513 (1967);J. Phys. A,1, 15 (1968);W. W. Graessley:Adv. Polym. Sci.,16, 1 (1974);M. G. Bereton andS. Sha:J. Phys. A,13, 2751 (1980);J. des Cloizeaux andM. Mehta:J. Phys. (Paris),40, 665 (1979).MATHCrossRefGoogle Scholar
  4. (4).
    M. Rasetti:Phase Transition in Lipid Bilayers inCristalli liquidi, edited by G.N.C.L. (Torino, 1981).Google Scholar
  5. (5).
    A. V. Vologodskii, A. V. Lukashin andM. D. Frank-Kamenetskii:Sov. Phys. JETP,40, 932 (1975). For the mathematical discussion of the invariants utilized by these authors, seeJ. W. Alexander:Trans. Am. Math. Soc.,30, 275 (1928);J. W. Alexander andG. B. Briggs:Ann. Math.,28, 562 (1927).ADSGoogle Scholar
  6. (6).
    K. Iwata:J. Phys. Soc. Jpn.,37 1413 (1974);S. F. Edwards andK. F. Freed:J. Phys. C,3, 739, 750, 760 (1970);S. F. Edwards andJ. W. Kerr:J. Phys. C,5, 2289 (1972);S. F. Edwards andJ. W. V. Grant:J. Phys. A,6, 1169, 1186 (1973).CrossRefGoogle Scholar
  7. (7).
    M. Delbrück:Proc. Symp. Appl. Math.,14, 55 (1962).Google Scholar
  8. (8).
    K. Wilson:Phys. Rev. D,10, 2445 (1974).CrossRefADSGoogle Scholar
  9. (9).
    G. Calgareanu:Rev. Roum. Math. Pures Appl.,4, 5 (1959);W. Pohl:J. Math. Mech.,17, 975 (1968);T. Banchoff:Proc. Am. Math. Soc.,45, 237 (1974).Google Scholar
  10. (10).
    T. Banchoff:Indiana Univ. Math. J.,25, 1171 (1976).MATHMathSciNetCrossRefGoogle Scholar
  11. (11).
    K. F. Freed:Adv. Phys. Chem.,22, 1 (1972).Google Scholar
  12. (12).
    J. P. Flory:Statistical Mechanics of Chain Molecules (New York, N. Y., 1969).Google Scholar
  13. (13).
    A. Truman:The polygonal path formulation of the Feynman path integral, inFeynman Path Integrals, edited byS. Albeverio, Ph. Combe, R. Høegh-Krohn, G. Rideau, M. Sirugue-Collin, M. Sirugue andR. Stora,Lecture Notes in Physics, No. 106 (Berlin, 1979).Google Scholar
  14. (14).
    M. Abramowitz andI. A. Stegun:Handbook of Mathematical Functions (New York, N. Y., 1972).Google Scholar

Copyright information

© Societá Italiana di Fisica 1984

Authors and Affiliations

  • C. Agnes
    • 1
  • M. Rasetti
    • 1
  1. 1.Dipartimento di Fisica del PolitecnicoTorinoItalia

Personalised recommendations