Skip to main content
Log in

Nipponites Mirabilis—A challenge to seashell theory?

  • Published:
Il Nuovo Cimento D

Summary

Our earlier foundation paper for the new science ofTheoretical Conchology presented a general theoryexplaining seashell growth trajectories in terms of optimal, energy-efficient, tensile «clockspring» curves satisfying Hamilton's «least-action» principle. Meanwhile, working in isolation and publishing in Japanese, after the tradition of Wasan, Takashi Okamoto presented precise measurements and uncannily accurate 3D curveguesses which provide a finedescription of several bizarre, and previously little understood, «free-coiling» heteromorphic ammonites. One of these,Nipponites mirabilis, is so bizarre and wild that it provides the first good test of our new general theory. We are able to demonstrate that, merely by choosing the two fundamental constants of differential geometry to be complex numbers, our standard «clockspring” curves adequatelydescribe andexplain these geometries though one small improvement is possible. Even more surprising, considering the sheer wildness of the geometries, is the fact that Okamoto's guessed 3D «spheroidal» shapes agree with our correct, more general, «Lissajous» counterparts to several significant figures … a remarkable feat of precise measurement and intuition, on Okamoto's part, perhaps in its own way comparable to the achievements of Tycho Brahae and Johannes Keppler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Moseley:Philosophical Transactions of the Royal Society (Lond.), Vol.128 (1838), p. 351;Philos. Mag., series 3,21, (138), 300 (1842).

    ADS  Google Scholar 

  2. J. F. Blake:Philos. Mag., series 5,6, 241 (1878).

    Google Scholar 

  3. B. Pettigrew:Design in Nature, multiple volume text (1908).

  4. D. W. Thompson:On Growth & Form (Cambridge University Press, 1917).

  5. The American Mathematical Monthly,25, 189 (1918).

  6. J. Swammerdam: «Biblia Naturae … Book of nature … with the life of the author by Herman Boerhave», original Dutch & Latin edition byT. Flloyd. New edition by J. Hill of London (1758).

  7. C. F. Naumann:Ann. Phys. (Leipzig),50, 223 (1840); ii)51, 245 (1840); iii)64, 538 (1845).

    Google Scholar 

  8. Haton de la Goupilliere:Annaes Scientificos da academia polytechnica do Porto (Coïmbra), Vol. iii(1), 5 (1908); Vol. iii(2), 69 (1908); Vol. iii(3), 133 (1908).

    Google Scholar 

  9. F. Gomes Teixeira:Traité des courbes spéciales remaequables, Tome2, Coïmbre, de l'Université: pp 76–86, 396–399, etc. (1909).

    Google Scholar 

  10. L. Lison:Bull. Acad. R. Belg. Cl. Sci.,28, 377 (1942), ii)Mem. Inst. R. Sci. Nat. Belg., ser. 2,34, 1 (1949).

    Google Scholar 

  11. H. Cintra andH. de Souza Lopez:Rev. Bras. de Biol.,12, 185 (1952).

    Google Scholar 

  12. T. Fukutomi:Hokkaido Univ. Geophys. Bull.,3, 63 (1952), in Japanese.

    Google Scholar 

  13. C. Illert:Sci. Austr.,4, 35 (1980).

    Google Scholar 

  14. G. Grandi:Geometria Demonstratio Theorematum Hugenianorum circa Logisticam seu Logarithmicam Lineam … (Florentiae, 1701).

  15. C. Illert:Seashell Mathematics (Griffin Press, Adelaide, 1976) ii)Mathematical Biosciences,63, 21 (1983).

    Google Scholar 

  16. M. M. Lipschutz:Differential Geometry, Schaum's Outline Series (McGraw Hill Co., New York, N.Y., 1969). See Chapt. 5, p. 80.

    Google Scholar 

  17. M. P. Do Carmo:Differential Geometry of Curves & Surfaces (Prentice Hall, Englewood Cliffs, N.J., 1976). See p. 16.

    Google Scholar 

  18. P. Serret:Théorie nouvelle géométrique et mécanique des lignes à double courbure (1860). See p. 101 etc.

  19. C. Illert:Introduction to Theoretical Conchology, A (Adelaide University, 1978).

  20. C. C. ten Hallers-Tjabbes:Thesis (University of Groningen, 1979).

  21. W. F. Bronsvoort andF. Klok ACM Transactions on Graphics,4, 291 (1985).

    Article  Google Scholar 

  22. C. Illert:Nuovo Cimento D,9, 791 (1987).

    MathSciNet  Google Scholar 

  23. C. Illert:Nuovo Cimento D,11, 761 (1989).

    MathSciNet  Google Scholar 

  24. T. Okamoto:Palaeontol. Soc. Jpn.,36, 37 (1984). In Japanese.

    MathSciNet  Google Scholar 

  25. T. Okamoto:Palaeontology,31, 35 (1988).

    Google Scholar 

  26. T. Okamoto:Palaeontology,31, 281 (1988).

    Google Scholar 

  27. T. Okamoto:Paleobiology,14, 272 (1988).

    Google Scholar 

  28. C. Illert:General theory of ultra-thin elastic conoids, in press (1990).

  29. A. M. Wahl:Mechanical Springs (Penton Publishers, Cleveland, OH, 1944).

    Google Scholar 

  30. J. A. van der Broek:Am. Soc. Mech. Eng.,53, 247 (1931).

    Google Scholar 

  31. C. L. & M. A. Fenton:The Fossil Book (Doubleday Co., 1958).

  32. R. H. Warring:Spring Design & Calculation (M.A.P. publications, England, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Illert, C. Nipponites Mirabilis—A challenge to seashell theory?. Il Nuovo Cimento D 12, 1405–1421 (1990). https://doi.org/10.1007/BF02452108

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02452108

PACS 87.10

PACS 46.30.Cn

Navigation