Advertisement

Il Nuovo Cimento D

, Volume 12, Issue 8, pp 1061–1078 | Cite as

Phonon dispersion curves and densities of lithium-intercalated iron phosphorus trisulfide

  • M. Bernasconi
  • G. Benedek
  • L. Miglio
Article

Summary

The lattice dynamics of Li-intercalated FePS3 has been studied by means of a force constant model generated by a set of short-range two-body potentials. The intercalated phases have been investigated for the three stoichiometric compositions: Li0.5FePS3, LiFePS3, Li1.5FePS3, with the aim of analysing the evolution of the host lattice normal modes as a function of the concentration, and of finding the dispersion of the new phonon branches induced by lithium. The above special values of lithium concentration have been chosen because the size of the unit cell keeps the same as in the host material. The force constants are fitted to the infrared data and the phonon dispersion curves and the phonon energy densities have been calculated. A spectroscopic method for monitoring lithium migration in the host material is proposed.

PACS 63.20.Dj

Phonon states and bands normal modes and phonon dispersion 

PACS 68.65

Layer structures, intercalation compounds, superlattices: growth, structure and nonelectronic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. H. Thompson andM. S. Whittingham:Mater. Res. Bull.,12, 741 (1977).CrossRefGoogle Scholar
  2. [2]
    A. Le Méhauté, G. Ouvrard, R. Brec andJ. Rouxel:Mater. Res. Bull.,12, 1191 (1977).CrossRefGoogle Scholar
  3. [3]
    R. Clement andM. L. H. Green:J. Chem. Soc. Dalton Trans.,10, 1566 (1979).CrossRefGoogle Scholar
  4. [4]
    R. Brec, D. M. Schleich, G. Ouvrard, A. Louisy andJ. Rouxel:Inorg. Chem.,18, 1814 (1979).CrossRefGoogle Scholar
  5. [5]
    P. J. S. Foot andN. G. Shaker:Mater. Res. Bull.,18, 173 (1983).CrossRefGoogle Scholar
  6. [6]
    M. Barj, G. Lucazeau andR. Clèment:J. Mol. Struct.,79, 329 (1982).CrossRefGoogle Scholar
  7. [7]
    M. Barj andG. Lucazeau:Solid State Ionics,9–10, 475 (1983).CrossRefGoogle Scholar
  8. [8]
    S. Yamanaka, H. Kobayashi andT. Tanaka:Chem. Lett. Jpn., 329 (1976).Google Scholar
  9. [9]
    R. Brec, G. Ouvrard, A. Louisy, J. Rouxel andA. Le Méhauté:Solid State Ionics,6, 185 (1982).CrossRefGoogle Scholar
  10. [10]
    M. H. Whangbo, R. Brec, G. Ouvrard andJ. Rouxel:Inorg. Chem.,24, 2459 (1985).CrossRefGoogle Scholar
  11. [11]
    M. Bernasconi, G. L. Marra, G. Benedek, L. Miglio, M. Jouanne, C. Julien, M. Scagliotti andM. Balkanski:Phys. Rev. B,38, 12089 (1988).CrossRefADSGoogle Scholar
  12. [12]
    R. W. G. Wychoff:Crystal Structures, Vol.2 (J. Wiley and Sons, New York, N.Y., 1984), p. 55.Google Scholar
  13. [13]
    W. Klingen: Thesis, Universität Hohenheim (1969).Google Scholar
  14. [14]
    W. Klingen, G. Eulenberger andH. Hahn:Z. Anorg. Allg. Chem.,401, 97 (1973).CrossRefGoogle Scholar
  15. [15]
    W. Klingen, R. Ott andH. Hahn:Z. Anorg. Allg. Chem.,396, 271 (1973).CrossRefGoogle Scholar
  16. [16]
    R. Brec, G. Ouvrard andJ. Rouxel:Mater. Res. Bull.,20, 1257 (1985);G. Ouvrard, R. Brec andJ. Rouxel:Mater. Res. Bull.,20, 1181 (1983).CrossRefGoogle Scholar
  17. [17]
    P. J. S. Foot andB. A. Nevett:Solid State Ionics,8, 173 (1983).CrossRefGoogle Scholar
  18. [18]
    Y. Chabre, P. Segransan, C. Berthier andG. Ouvrard:Fast Ion Transport in Solids, edited byP. Vashista, J. N. Mundy andG. H. Shenoy (North-Holland, Amsterdam, 1979), p. 221.Google Scholar
  19. [19]
    H. Mercier: These d'Etat, Université de Paris Sud, Orsay (1985).Google Scholar
  20. [20]
    N. Kurita andK. Nakao:J. Phys. Soc. Jpn.,56, 4455 (1987).CrossRefADSGoogle Scholar
  21. [21]
    A. A. Maradudin, E. W. Montroll, G. H. Weiss andI. P. Ipatova:Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, New York, N.Y., 1971).Google Scholar
  22. [22]
    G. Benedek, G. L. Marra, L. Miglio, M. Scagliotti andM. Jouanne:Phys. Scr.,37, 759 (1988).ADSGoogle Scholar
  23. [23]
    M. Born andK. Huang:Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954), p. 247.Google Scholar
  24. [24]
    M. Tosi:Solid State Phys.,16, 1 (1964).Google Scholar
  25. [25]
    M. Scagliotti, M. Jouanne, M. Balkanski andG. Ouvrard:Solid State Commun.,54, 291 (1985).CrossRefGoogle Scholar
  26. [26]
    M. Scagliotti, M. Jouanne, M. Balkanski, G. Ouvrard andG. Benedek:Phys. Rev. B,35, 7097 (1987).CrossRefADSGoogle Scholar
  27. [27]
    M. Balkanski, M. Jouanne, G. Ouvrard andM. Scagliotti:J. Phys. C,20, 4397 (1987).CrossRefADSGoogle Scholar
  28. [28]
    C. Sourisseau, J. P. Forgerit andY. Mathey:Solid State Chem.,49, 134 (1983).CrossRefADSGoogle Scholar
  29. [29]
    Y. Mathey, R. Clement, C. Sourisseau andG. Lucazeau:Inorg. Chem.,19, 273 (1980).Google Scholar
  30. [30]
    M. Barj, C. Sourisseau, G. Ouvrard andR. Brec:Solid State Ionics,11, 179 (1983).CrossRefGoogle Scholar
  31. [31]
    R. Mercier, J. P. Malugani, B. Fahys, J. Douglade andG. Robert:J. Solid State Chem.,43, 151 (1982).CrossRefADSGoogle Scholar
  32. [32]
    G. A. Fatseas, M. Evain, G. Ouvrard, R. Brec andM. H. Whangbo:Phys. Rev. B,35, 3082 (1987).CrossRefADSGoogle Scholar
  33. [33]
    R. Brec andG. Ouvrard: private communications.Google Scholar
  34. [34]
    C. Horie, M. Maeda andY. Kuramoto:Phisica B,99, 430 (1980).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1990

Authors and Affiliations

  • M. Bernasconi
    • 1
  • G. Benedek
    • 1
  • L. Miglio
    • 1
  1. 1.Dipartimento di Fisica dell'UniversitàMilanoItalia

Personalised recommendations