Skip to main content
Log in

Macroscopic models for sound propagation in normal liquid3He

  • Published:
Il Nuovo Cimento D

Summary

The viscoelastic model for the propagation of sound in liquid3He is generalized by including distorsions of the Fermi surface with multipolarityl=3. The predictions of the theory are compared with the solutions of Landau's equations as well as with experimental data for the attenuation and velocity of sound. Connections with other approaches based on the use of sum rules and of extended thermodynamics are also discussed.

Riassunto

Il modello viscoelastico per la propagazione del suono in3He liquido è stato generalizzato mediante l'inclusione di deformazioni della sfera di Fermi con multipolaritàl=3. Le previsioni della teoria sono state confrontate con le soluzioni dell'equazione di Landau così come con dati sperimentali di attenuazione e velocità del suono. Sono state inoltre discusse connessioni con altri approcci basati sull'uso delle regole di somme e della termodinamica del non equilibrio.

Резюме

Обобщается упруговязкая модель распространения звука в жидком3He, включая искажения прверхности Ферми с мультипольностьюl=3. Предсказания теории сравниваются с решениями уравнений Ландау, а также с зкспериментальными данными для затухания и скорости звука. Обсуждается взаимосвязь с другими подходами, основанными на использовании правии сумм и неравновесной термодинамике.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Pines andP. Nozières:The Theory of Quantum Liquids (Benjamin, New York, N. Y., 1966).

    Google Scholar 

  2. G. Baym andC. J. Pethick: inThe Physics of Liquid and Solid Helium, edited byK. H. Bennemann andJ. B. Ketterson (Wiley, New York, N. Y., 1978), Part II, p. 1.

    Google Scholar 

  3. R. E. Nettleton:J. Low Temp. Phys.,22, 407 (1976).

    Article  ADS  Google Scholar 

  4. I. Rudnick:J. Low Temp. Phys.,40, 287 (1980).

    Article  ADS  Google Scholar 

  5. K. Bedell andC. J. Pethick:J. Low Temp. Phys.,49, 213 (1982).

    Article  ADS  Google Scholar 

  6. W. R. Abel, A. C. Anderson andJ. C. Wheatley:Phys. Rev. Lett.,17, 74 (1966).

    Article  ADS  Google Scholar 

  7. J. B. Ketterson, P. R. Roach, B. M. Abraham andP. D. Roach: inQuantum Statistics and the Many Body Problem, edited byS. B. Trickey (Plenum Press, New York, N. Y., 1975).

    Google Scholar 

  8. P. R. Roach andJ. B. Ketterson:Phys. Rev. Lett.,36, 736 (1976).

    Article  ADS  Google Scholar 

  9. L. D. Landau:Sov. Phys. JETP,3, 920 (1957);5, 101 (1957).

    MATH  Google Scholar 

  10. J. M. Khalatnikov andA. A. Abrikosov:Sov. Phys. JETP,6, 84 (1958).

    MathSciNet  ADS  Google Scholar 

  11. C. J. Pethick:Phys. Rev.,185, 384 (1969).

    Article  ADS  Google Scholar 

  12. D. S. Greywall:Phys. Rev. B.,27, 2747 (1983).

    Article  ADS  Google Scholar 

  13. J. C. Wheatley:Rev. Mod. Phys.,47, 415 (1975).

    Article  ADS  Google Scholar 

  14. G. F. Bertsch:Elasticity: A useful concept for degenerate Fermi systems (1977), unpublished.

  15. R. E. Nettleton:J. Low Temp. Phys.,24, 275 (1976);26, 277 (1977).

    Article  ADS  Google Scholar 

  16. L. D. Landau andE. M. Lifschitz:Theory of Elasticity (Pergamon Press, London, 1959), p. 130.

    Google Scholar 

  17. F. Dalfovo andS. Stringari, LT-17 (Contributed Papers), edited by.U. Eckern, A. Schmid, W. Weber andH. Wühl (Elsevier Science Publisher, B. V., 1984).

  18. T. A. Alvesalo, H. K. Collan, M. T. Loponen, O. V. Lounasmaa andM. C. Veuro:J. Low Temp. Phys.,19, 1 (1975);D. C. Carless, H. E. Hall andJ. R. Hook:J. Low Temp. Phys.,50, 583 (1983);J. M. Parpia, D. J. Sandiford, J. E. Berthold andJ. D. Reppy:Phys. Rev. Lett.,40, 565, (1978);J. M. Parpia: private communication.

    Article  Google Scholar 

  19. F. P. Milliken, R. W. Richardson andS. J. Williamson:J. Low Temp. Phys.,45, 409 (1981).

    Article  ADS  Google Scholar 

  20. T. L. Ainsworth, K. S. Bedell, G. E. Brown andK. F. Quader:J. Low Temp. Phys.,50, 319 (1983).

    Article  ADS  Google Scholar 

  21. D. N. Paulson, R. T. Johnson andJ. C. Wheatley:Phys. Rev. Lett.,30, 829 (1973).

    Article  ADS  Google Scholar 

  22. E. G. Flowers, R. W. Richardson andS. J. Williamson:Phys. Rev. Lett.,37, 309 (1976).

    Article  ADS  Google Scholar 

  23. S. Stringari:J. Low Temp. Phys.,57, 307 (1984).

    Article  Google Scholar 

  24. S. Stringari:Ann. Phys. (N.Y.),154, 35 (1983).

    Article  ADS  Google Scholar 

  25. R. E. Nettleton: inRecent Development in Nonequilibrium Thermodynamics. Proceedings, Barcelona, 1983 (Springer-Verlag, Berlin, 1984), p. 1;I. Müller: inRecent Development in Nonequilibrium Thermodynamics. Proceedings, Barcelona, 1983 (Springer-Verlag, Berlin, 1984), p. 32;I-Shih Liu andI. Müller:Arch. Ration. Mech. Anal.,83, 285 (1983).

    Google Scholar 

  26. K. Huang:Statistical Mechanics (J. Wiley, New York, N. Y., 1963).

    Google Scholar 

  27. S. Stringari:Nuovo Cimento A,87, 231 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalfovo, F., Stringari, S. Macroscopic models for sound propagation in normal liquid3He. Il Nuovo Cimento D 6, 445–467 (1985). https://doi.org/10.1007/BF02451902

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02451902

PACS. 67.50

Navigation