Il Nuovo Cimento D

, Volume 17, Issue 7–8, pp 835–846 | Cite as

Synchronization of the stochastic Fitzhugh-Nagumo equations to periodic forcing

  • A. Longtin


The Fitzhugh-Nagumo equations (FHN) provide a simple description of the dynamics of a large class of neurons. We characterize synchronization and stochastic resonance in this model using two complementary points of view: the signal-to-noise ratio (SNR), and the absolute as well as normalized peak heights of the interspike interval histograms (ISIHs). At low stimulus frequencies, multiple firings can occur during one period, while at high frequencies, the refractoriness precludes firing at every cycle. The behaviors of the SNR and ISIHs are thus investigated at low, medium and high frequencies to illustrate special synchronization properties of the FHN system. In particular, the behavior of the SNRvs. noise is found to be similar for forcing amplitudes just below and above that at which a 2:1 deterministic phase-locked firing solution becomes stable. Our results rely on an accurate method of estimation of the power spectrum of the point process formed by the firing times. A theoretical analysis for the shape of the simulated power spectra is also presented.

PACS 87.10

General, theoretical, and mathematical biophysics (including logic of biosystems, quantum biology, and relevant aspects of thermodynamics, information theory, cybernetics, and bionics) 

PACS 05.40

Fluctuation phenomena, random processes, and Brownian motion 

PACS 02.50

Probability theory, stochastic processes, and statistics 

PACS 01.30.Cc

Conference proceedings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alexander J. C., Doedel E. J. andOthmer H. G.,SIAM (Soc. Industr. Appl. Math.) J. Appl. Math.,50 (1990) 1373.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    French A. S. andHolden A. V.,Kybernetik,8 (1971) 165.CrossRefGoogle Scholar
  3. [3]
    Moore G. P., Perkel D. H. andSegundo J. P.,Ann. Rev. Physiol.,28 (1966) 493.CrossRefGoogle Scholar
  4. [4]
    Longtin A., Bulsara A., Pierson D. andMoss F.,Biol. Cybern.,70 (1994) 569.MATHGoogle Scholar
  5. [5]
    Longtin A.,J. Stat. Phys.,70 (1993) 309.MATHCrossRefGoogle Scholar
  6. [6]
    Chialvo D. R. andApkarian V.,J. Stat. Phys.,70 (1993) 375.MATHCrossRefGoogle Scholar
  7. [7]
    Douglass J. K., Wilkens L., Pantazelou E. andMoss F.,Nature,365 (1993) 337.CrossRefADSGoogle Scholar
  8. [8]
    McA. Sayers B.,Infering significance from biological signals, inBiomedical Engineering Systems, edited byM. Clyness andJ. Milsum (McGraw-Hill, New-York) 1970, p. 84.Google Scholar
  9. [9]
    Zhou T., Moss F. andJung P.,Phys. Rev. A,42 (1990) 3161.CrossRefADSGoogle Scholar
  10. [10]
    Gummer A. W.,Hearing Res.,55 (1991) 143.CrossRefGoogle Scholar
  11. [11]
    French A. S., Holden A. V. andStein R. B.,Kybernetik,11 (1972) 15.CrossRefGoogle Scholar
  12. [12]
    Wiesenfeld K., Pierson D., Pantazelou E. andMoss F.,Phys. Rev. Lett.,72 (1994) 2125.CrossRefADSGoogle Scholar
  13. [13]
    Coggshall J. C.,Kybernetik,13 (1973) 30.CrossRefGoogle Scholar
  14. [14]
    Hochmair-Desoyer I. J., Hochmair E. S., Motz H. andRattay F.,Neuroscience,13 (1984) 553.CrossRefGoogle Scholar
  15. [15]
    Motz H. andRattay F.,Neuroscience,18 (1986) 699.CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1995

Authors and Affiliations

  • A. Longtin
    • 1
  1. 1.Département de PhysiqueUniversité d'OttawaOttawaCanada

Personalised recommendations