, Volume 102, Supplement 1, pp S32–S38 | Cite as

Structural and functional studies on ø29 DNA polymerase

  • María A. Blasco
  • José A. Esteban
  • Juan Méndez
  • Luis Blanco
  • Margarita Salas


TheBacillus subtilis phage ø29 DNA polymerase, involved in protein-primed viral DNA replication, contains several amino acid consensus sequences common to other eukaryotic-type DNA polymerases. Using site-directed mutagenesis, we have studied the functional significance of a C-terminal conserved region, represented by the Lys-X-Tyr (“K-Y”) motif. Single point mutants have been constructed and the corresponding proteins have been overproduced and characterized. Measurements of the activity of the mutant proteins indicated that the invariant Lys and Tyr residues play a critical role in DNA polymerization. Interestingly, substitution of the invariant Lys either by Arg or Thr, produced enzymes with an increased or a largely reduced, respectively, capability to use a protein as primer, an intrinsic property of TP-priming DNA polymerases. On the other hand, the viral protein p6, which stimulates initiation of ø29 DNA replication by formation of a nucleoprotein complex at both DNA replication origins, increased (about 5-fold) the insertion fidelity of ø29 DNA polymerase during the formation of the TP-dAMP initiation complex. We propose a model in which the special strategy to maintain the integrity of the ø29 DNA ends, by means of a “sliding-back” mechanism, could also contribute to increase the fidelity of ø29 DNA replication.


Nucleoprotein Complex Terminal Protein Amino Acid Consensus Sequence Primed Initiation Bacillus Subtilis Phage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Argos P. (1987) Analysis of sequence-similar pentapeptides in unrelated protein tertiary structures. J. Mol. Biol. 197:331–348PubMedCrossRefGoogle Scholar
  2. Bernad A., Zaballos A., Salas M., Blanco L. (1987) Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases. EMBO J. 6:4219–4225PubMedGoogle Scholar
  3. Bernad A., Blanco L., Lázaro J.M., Martin G., Salas M. (1989) A conserved 3′–5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59:219–228PubMedCrossRefGoogle Scholar
  4. Bernad A., Lázaro J.M., Salas M., Blanco L. (1990) The highly conserved amino acid sequence motifTyr-Gly-Asp-Thr-Asp-Ser in α-like DNA polymerases is required by phage ø29 DNA polymerase for protein-primed initiation and polymerization. Proc. Natl. Acad. Sci. USA 87:4610–4614PubMedCrossRefGoogle Scholar
  5. Blanco L., Salas M. (1984) Characterization and purification of a phage ø29-encoded DNA polymerase required for the initiation of replication. Proc. Natl. Acad. Sci. USA 81:5325–5329PubMedCrossRefGoogle Scholar
  6. Blanco L., Salas M. (1985a) Replication of phage ø29 DNA with purified terminal protein and DNA polymerase: Synthesis of full length DNA. Proc. Natl. Acad. Sci. USA 82:6404–6408PubMedCrossRefGoogle Scholar
  7. Blanco L., Salas M. (1985b) Characterization of a 3′–5′ exonuclease activity in the phage ø29 DNA polymerase. Nucl. Acids Res. 13:1239–1249PubMedGoogle Scholar
  8. Blanco L., Bernad A., Lázaro J.M., Martin G., Garmendia C., Salas M. (1989) Highly efficient DNA synthesis by the phage ø29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem. 264:8935–8940PubMedGoogle Scholar
  9. Blanco L., Bernad A., Blasco M.A., Salas M. (1991) A general structure for DNA-dependent DNA polymerases. Gene 100:27–38PubMedCrossRefGoogle Scholar
  10. Blasco M.A., Blanco L., Parés E., Salas M., Bernad A. (1990) Structural and functional analysis of temperature-sensitive mutants of the phage ø29 DNA polymerase Nucl. Acids Res. 18:4763–4770PubMedGoogle Scholar
  11. Blasco M.A., Bernad A., Blanco L., Salas M. (1991) Characterization and mapping of the pyrophosphorolytic activity of the phage ø29 DNA polymerase. Involvement of amino acid motifs highly conserved in α-like DNA polymerases. J. Biol. Chem. 266: 7904–7909.PubMedGoogle Scholar
  12. Blasco M.A., Lázaro J.M., Bernad A., Blanco L., Salas M. (1992) ø29 DNA polymerase active site: mutants in conserved residues Tyr254 and Tyr 390 are affected in dNTP binding. J. Biol. Chem. 267: 19427–19434PubMedGoogle Scholar
  13. Chou P.Y., Fasman G.D. (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. 47:45–148PubMedGoogle Scholar
  14. Darnagnez V., Tillit J., De Recondo A.M., Baldacci G. (1991) The POL 1 gene from the fission yeastSchizosaccharomyces pombe, shows conserved amino acid blocks specific for eukaryotic DNA polymerases alpha. Mol. Gen. Genet. 226:182–189CrossRefGoogle Scholar
  15. Esteban J.A., Salas M., Blanco L. (1992) Fidelity of ø29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. J. Biol. Chem, in press.Google Scholar
  16. Garmendia C., Bernad A., Esteban J.A., Blanco L., Salas M. (1992) The bacteriophage ø29 DNA polymerase, a proof-reading enzyme. J. Biol. Chem. 267:2594–2599PubMedGoogle Scholar
  17. Garnier J., Osguthorpe D.J., Robson B. (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120:97–120PubMedCrossRefGoogle Scholar
  18. Hishinuma F., Hirai K. (1991) Genome organization of the linear plasmid pSKL, isolated fromSaccharomyces kluyveri. Mol. Gen. Genet. 226:97–106PubMedCrossRefGoogle Scholar
  19. Ito J., Braithwaite D.K. (1991) Compilation and alignment of DNA polymerase sequences. Nucl. Acids Res. 19:4045–4057PubMedGoogle Scholar
  20. Leegwater P.A.J., Strating M, Murphy NB, Kooy RF, van der Vliet PC, Overdulve JP (1991) TheTrypanosoma brucei DNA polymerase α core subunit gene is developmentally regulated and linked to a constitutively expressed open reading frame. Nucl. Acids Res. 19:6441–6447PubMedGoogle Scholar
  21. Méndez J., Blanco L., Esteban J.A., Bernad A., Salas M. (1992) Initiation of ø29 DNA replication occurs at the second 3′ nucleotide of the linear template: a sliding-back mechanism for protein-primed DNA replication. Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  22. Nakamaye K., Eckstein F. (1986) Inhibition of restriction endonuclease Ncil cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucl. Acids Res. 14: 9679–9698PubMedGoogle Scholar
  23. Pastrana R., Lázaro J.M., Blanco L., García J.A., Méndez E., Salas M. (1985) Overproduction and purification of protein p6 ofBacillus subtilis phage ø29: role in the initiation of DNA replication. Nucl. Acids Res. 13:3083–3100PubMedGoogle Scholar
  24. Peñalva M.A., Salas M. (1982) Initiation of phage ø29 DNA replicationin vitro: formation of a covalent complex between the terminal protein p3 and 5′-dAMP. Proc. Natl. Acad. Sci. USA 79:5522–5526PubMedCrossRefGoogle Scholar
  25. Ridley R.G., White J.H., McAleese S.M., Goman M., Alano P., de Vries E., Kilbey B.J. (1991) DNA polymerase δ: gene sequences fromPlasmodium falciparum indicate that this enzyme is more highly conserved than DNA polymerase α. Nucl. Acids Res. 19: 6731–6736PubMedGoogle Scholar
  26. Robison M.M., Roger J.C., Horgen P.A. (1991) Homology between mitochondrial DNA ofAgaricus bisporus and an internal portion of a linear mitochondrial plasmid ofAgaricus bitorquis. Curr. Genet. 19:495–502PubMedCrossRefGoogle Scholar
  27. Rohe M., Schrage K., Meinhardt F. (1991) The linear plasmid pMC3-2 fromMorchella conica is structurally related to adenoviruses. Curr. Genet. 20:527–533PubMedCrossRefGoogle Scholar
  28. Salas M. (1991) Protein-priming of DNA replication. Annu. Rev. Biochem. 60:39–71PubMedCrossRefGoogle Scholar
  29. Serrano M., Gutiérrez J., Prieto I., Hermoso, J.M., Salas M. (1989) Signals at the bacteriophage ø29 DNA replication origins required for protein p6 binding and activity. EMBO J. 8:1879–1885PubMedGoogle Scholar
  30. Serrano M., Salas M., Hermoso J.M. (1990) A novel nucleoprotein complex at a replication origin. Science 248:1012–1016PubMedGoogle Scholar
  31. Studier F.W., Moffat B.A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 1989:113–130Google Scholar
  32. Tabor S., Richardson C.C. (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82:1074–1078PubMedCrossRefGoogle Scholar
  33. Tabor S., Richardson C.C. (1987) DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc. Natl. Acad. Sci. USA 84:4767–4771PubMedCrossRefGoogle Scholar
  34. Tomalski M.D., Wu J., Miller L.K. (1988) The location, sequence, transcription, and regulation of a baculovirus DNA polymerase gene. Virology 167:591–600PubMedGoogle Scholar
  35. Zaballos A., Salas M. (1989) Functional domains in the bacteriophage ø29 terminal protein for interaction with the ø29 DNA polymerase and with DNA. Nucl. Acids Res. 17:10353–10366PubMedGoogle Scholar
  36. Zhang J., Chung D.W., Tan C.-K., Downey K.M., Davie E.W., So A.G. (1991) Primary structure of the catalytic subunit of calf thymus DNA polymerase δ: sequence similarities with other DNA polymerases. Biochemistry 30:11742–11750PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • María A. Blasco
    • 1
  • José A. Esteban
    • 1
  • Juan Méndez
    • 1
  • Luis Blanco
    • 1
  • Margarita Salas
    • 1
  1. 1.Centro de Biología Molecular (CSIC-UAM)Universidad AutónomaMadridSpain

Personalised recommendations