Il Nuovo Cimento D

, Volume 14, Issue 7, pp 661–677 | Cite as

Dynamic shadow effect in the energy loss of protons

  • N. P. Kalashnikov
  • K. M. Erokhin
  • V. A. Mashinin
  • E. V. Skatchkov
Article
  • 14 Downloads

Summary

The nonrelativistic quantum-mechanical approach for the stopping power has been developed by means of the Glauber-Franco approximation for the inelastic-scattering amplitude. It takes into account excitation and ionization processes in the amorphous target by heavy charged particles. The calculations of the stopping power of protons in H and He targets are in excellent agreement with the available experimental data due to the effect of nuclear dynamic blocking (shadow) and the rescattering processes by the electrons of the target atom. Formulae of the stopping-power calculations, taking into account individual atom shell effects, have been derived. On this basis, the case of violation of Bragg’s additivity rule is discussed.

PACS 34.50

Inelastic scattering of atoms and molecules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. F. Ziegler:The Stopping and Ranges of Ions in Matter, Vol.2–6 (Pergamon Press, New York, N.Y., 1977).Google Scholar
  2. [2]
    B. C. Yarlagadda andJ. E. Robinson:Phys. Rev. B,17, 3473 (1978).CrossRefADSGoogle Scholar
  3. [3]
    K. Brunner, W. Hink andM. Poeth:Nucl. Instrum. Methods,173, 357 (1980).CrossRefGoogle Scholar
  4. [4]
    P. Mertens andTh. Krist:Nucl. Instrum. Methods,168, 33 (1980).CrossRefGoogle Scholar
  5. [5]
    O. B. Firsov:J. Exp. Theor. Phys. (USSR),33, 696 (1957);6, 534 (1958).MATHGoogle Scholar
  6. [6]
    U. V. Gott:Interaction of Particles with Matter in Plasma Research (AtomIzdat, Moscow, 1978).Google Scholar
  7. [7]
    O. B. Firsov:J. Exp. Theor. Phys. (USSR),36, 1517 (1959).Google Scholar
  8. [8]
    J. Lindhard andM. Sharff:Phys. Rev.,124, 128 (1964).CrossRefADSGoogle Scholar
  9. [9]
    D. K. Brice:Phys. Rev. A,6, 1791 (1972).CrossRefADSGoogle Scholar
  10. [10]
    S. A. Cruz, V. Vargas-Aburto andD. K. Brice:Phys. Rev. A,27, 2403 (1983).CrossRefADSGoogle Scholar
  11. [11]
    K. Bjorkgvist andB. Pommeij:Radiat. Eff.,13, 191 (1972);H. Pape, H.-G. Clerc andK.-H. Schmidt:Z. Phys. A,286, 159 (1978).Google Scholar
  12. [12]
    N. F. Mott andH. S. W. Massey:The Theory of Atomic Collisions, third edition (Clarendon Press, Oxford, 1965).Google Scholar
  13. [13]
    R. J. Glauber:Phys. Rev.,100, 242 (1955).CrossRefADSGoogle Scholar
  14. [14]
    L. I. Shiff:Phys. Rev.,103, 443 (1956).MathSciNetCrossRefADSGoogle Scholar
  15. [15]
    V. Franco:Phys. Rev. Lett.,20, 709 (1968);Phys. Rev. A,1, 1705 (1970).CrossRefADSGoogle Scholar
  16. [16]
    J. E. Golden andJ. H. McGuire:Phys. Rev. A,15, 449 (1977).MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    T. Kaneko:Phys. Status Solidi B,156, 49 (1989).Google Scholar
  18. [18]
    H. Narumi andA. Tzuji:Prog. Theor. Phys.,53, 761 (1975);54, 740 (1975).CrossRefGoogle Scholar
  19. [19]
    B. K. Tomas andF. T. Chan:Phys. Rev. A,8, 252 (1973).CrossRefADSGoogle Scholar
  20. [20]
    L. D. Landau andE. M. Lifshitz:Quantum Mechanics (Pergamon Press, Oxford, 1977).Google Scholar
  21. [21]
    K. M. Erokhin, N. P. Kalashnikov, V. A. Mashinin andE. V. Skatchkov: inComputer Simulation of the Crystal Defect Kinetics (USSR) (Nauka, Leningrad, 1985).Google Scholar
  22. [22]
    H. A. Bethe:Intermediate Quantum Mechanics (W. A. Benjamin, Inc., New York, Amsterdam, 1964).Google Scholar
  23. [23]
    N. P. Kalashnikov:Coherent Interactions of Charged Particles in Single Crystals (Harwood Acad. Publ., London, 1988).Google Scholar
  24. [24]
    J. Lindhard andA. Winter:Kgl. Dan. Vid. Selsk Mat-Fys. Medd.,34 (1964).Google Scholar
  25. [25]
    R. K. Nesbet andJ. F. Ziegler:Appl. Phys. Lett.,31, 810 (1977).CrossRefADSGoogle Scholar
  26. [26]
    Z. Vager andD. S. Gemmel:Phys. Rev. Lett.,37, 1352 (1976).CrossRefADSGoogle Scholar
  27. [27]
    H. H. Andersen andJ. F. Ziegler:Hydrogen Stopping Powers and Ranges in All Elements, Vol.3 (Pergamon Press, New York, N.Y., 1977).Google Scholar
  28. [28]
    Th. Krist andP. Mertens:Nucl. Instrum. Methods Phys. Res.,218, 790 (1983).CrossRefGoogle Scholar
  29. [29]
    Sh. Z. Izmailov, E. I. Sirotinin andA. F. Tuliniv:Nucl. Instrum. Methods,168, 81 (1980).CrossRefGoogle Scholar
  30. [30]
    S. V. Starodubzev andA. M. Romanov:Penetration of the Charged Particles through Matter (Tashkent, 1962).Google Scholar
  31. [31]
    G. Blondiaux, M. Valladon andK. Ishii:Nucl. Instrum. Methods,218, 790 (1983).CrossRefGoogle Scholar
  32. [32]
    R. Kreutz, W. Neuwirth andW. Pietsch:Phys. Rev. A,22, 2606 (1980).CrossRefADSGoogle Scholar
  33. [33]
    D. Powers:Acc. Chem. Res.,13, 433 (1980).CrossRefGoogle Scholar
  34. [34]
    R. B. Brown andD. Powers:J. Appl. Phys.,50, 5099 (1978).CrossRefADSGoogle Scholar
  35. [35]
    E. Kramaratos:Nucl. Instrum. Methods Phys. Res.,218, 790 (1983).CrossRefGoogle Scholar
  36. [36]
    Y. J. Xu andG. S. Khandwal:Phys. Rev. A,29, 3419 (1984).CrossRefADSGoogle Scholar
  37. [37]
    K. M. Erokhin, N. P. Kalashnikov, V. A. Mashinin andE. V. Skatchkov: inProceedings of the XVI Conference on Interaction Charged Particles with Crystals (Moscow University, 1987), p. 62.Google Scholar
  38. [38]
    K. M. Erokhin, N. P. Kalashnikov, V. A. Mashinin andE. V. Skatchkov: inProceedings of the XVII Conference on Interaction Charged Particles with Crystals (Moscow University, 1988), p. 50.Google Scholar
  39. [39]
    V. S. Kondratev:Structures of Atoms and Molecules (Moscow, 1959).Google Scholar
  40. [40]
    A. S. Davydov:Quantum Mechanics (Pergamon Press, Oxford, 1965).Google Scholar

Copyright information

© Società Italiana di Fisica 1992

Authors and Affiliations

  • N. P. Kalashnikov
    • 1
  • K. M. Erokhin
    • 2
  • V. A. Mashinin
    • 2
  • E. V. Skatchkov
    • 2
  1. 1.Moscow Automobile-Constructive Institute (ZIL Factory Institute)MoscowRussia
  2. 2.All Research Institute of Engineering Physics and AutomationMoscowRussia

Personalised recommendations