Applied Mathematics and Mechanics

, Volume 12, Issue 10, pp 993–1000 | Cite as

Tensile instability of nonlinear spherical membrane with large deformation

  • Shang Xin-chun
Article

Abstract

The problem on instability of nonlinear spherical membrane with large axisymmetric tensile deformations is investigated by using the bifurcation theory. It is proved that all singular points of the nonlinear boundary value problem must be simple limit points. The effect of loading and material parameters on the equilibrium state and its stability is discussed.

Key words

hyperelasticity bifurcation theory effect of multiple parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adkins, J. E. and R. S. Rivlin, Large elastic deformations of isotropic materials, part IX;Phil. trans. Roy. Soc., A, 244 (1952), 505–531.MATHMathSciNetGoogle Scholar
  2. [2]
    Green, A. E. and J. E. Adkins,Large Elastic Deformations and Non-Linear Continuum Mechanics, Chap. 4, Clarendon Press (1960).Google Scholar
  3. [3]
    Eringen, A. C.,Non-Linear Theory of Continuous Media, Chap. 6 McGraw-Hill Book Company, Inc. (1962).Google Scholar
  4. [4]
    Hart-Smith, L. J., Elasticity parameters for finite deformations of rubber-like materials,ZAMP,17 (1966), 608–626.CrossRefGoogle Scholar
  5. [5]
    Alexander, H., Tensile instability of initially spherical balloons,Internat. J. Engrg. Sci.,9 (1971), 151–162.CrossRefGoogle Scholar
  6. [6]
    Sewell, M. J., Some mechanical examples of catastrophe theory,Bull. Inst. Math. Appl.,12 (1976), 163–172.MathSciNetGoogle Scholar
  7. [7]
    Haughton, D. M. and R. W. Ogden, On the incremental equations in non-linear elasticity, II. Bifurcation of pressurized spherical shell,J. Mech. Phys. Solids,26 (1978), 111–138.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Zhu Zheng-you and Cheng Chang-jun,Numerical Methods of Bifurcation Problems, Chap. 3, Lanzhou University Press (1989). {cm(in Chinese)}Google Scholar
  9. [9]
    Yang, W. H. and W. W. Feng, On axisymmetrical deformations of non-linear membranes,Trans. ASME. J. Appl. Mech., Ser. E,92 (1970), 1002–1001.Google Scholar
  10. [10]
    Erdelyi A.,Higher Transcendental Functions, Chap. 3, Vol. I., McGraw-Hill Book Company, Inc. (1953).Google Scholar

Copyright information

© Shanghai University of Technology (SUT) 1991

Authors and Affiliations

  • Shang Xin-chun
    • 1
  1. 1.Department of MechanicsLanzhou UniversityLanzhou

Personalised recommendations