Skip to main content
Log in

The nut solution as a gravitational dyon

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Linearized theory suggests that the NUT solution of Einstein's equations corresponds to a source with both mass and dual mass i.e. to a gravitational dyon. This is born out by the striking identity between the Killing operators of the NUT solution and the ‘total angular momentum’ operators of the monopole. On this basis, Misner's periodic time condition is shown to be the analogue of the Dirac quantization, and results from the requirement that the generators integrate to a global Lie group. It is also shown that there are no bound states for a Klein-Gordon field in NUT space provided the field vanishes in the conventional way at the horizon. For this purpose a generalized ‘tortoise coordinate’ is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newman, E., Tamburino, L. and Unti, T. (1963).J. Math. Phys.,4, 915.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Misner, C.W. (1963).J. Math. Phys.,4, 924.

    Article  MathSciNet  ADS  Google Scholar 

  3. Bonnor, W.B. (1969).Proc. Camb. Phil. Soc.,66, 145.

    MATH  MathSciNet  ADS  Google Scholar 

  4. Grönblom, B.O. (1935).Z. Phys.,98, 283.

    Article  MATH  ADS  Google Scholar 

  5. Jordan, P. (1938).Ann. d. Phys.,32, 66.

    MATH  ADS  Google Scholar 

  6. Dowker, J.S. and Roche, J.A. (1967).Proc. Phys. Soc.,92, 1.

    Article  Google Scholar 

  7. Demianski, M. and Newman, E.T. (1966).Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,14, 653.

    MATH  Google Scholar 

  8. Barut, A.O. (1971).Phys. Rev.,D3, 1747.

    ADS  Google Scholar 

  9. Sackfield, A. (1971).Proc. Camb. Phil. Soc.,70, 89.

    Article  Google Scholar 

  10. Taub, A. (1951).Ann. Math.,53, 472.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Misner C.W. and Taub, A.H. (1968).Zh. Eksper. Teor. Fiz.,55, 233.

    Google Scholar 

  12. Dirac, P.A.M. (1931).Proc. Roy. Soc.,A133, 60.

    ADS  Google Scholar 

  13. Wentzel, G. (1966).Prog. Theor. Phys. Suppl.,37–38, 163.

    Google Scholar 

  14. Fierz, M. (1944).Helv. Phys. Acta,17, 27.

    MATH  MathSciNet  Google Scholar 

  15. Hurst, C.A. (1968).Ann. Phys.,50, 51.

    Article  MATH  ADS  Google Scholar 

  16. Miller, W. (1968).Lie Theory and Special Functions, (Academic Press, New York).

    MATH  Google Scholar 

  17. Hermann, R. (1968).Differential Geometry and The Calculus of Variations, (Academic Press, New York).

    MATH  Google Scholar 

  18. Vilenkin, N.J. (1968).Special Functions and The Theory of Group Representations, (A.M.S., Providence, R.I.).

    MATH  Google Scholar 

  19. Teitelboim, C. (1972).Phys. Rev.,D5, 2941.

    MathSciNet  ADS  Google Scholar 

  20. Price, R.H. (1972).Phys. Rev.,D5, 2419.

    MathSciNet  ADS  Google Scholar 

  21. Schwinger, J. (1966).Phys. Rev.,144, 1087.

    Article  MathSciNet  ADS  Google Scholar 

  22. Feinblum, D.A. (1970).J. Math. Phys.,11, 2713.

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dowker, J.S. The nut solution as a gravitational dyon. Gen Relat Gravit 5, 603–613 (1974). https://doi.org/10.1007/BF02451402

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02451402

Keywords

Navigation