Spin and torsion in general relativity II: Geometry and field equations

  • F. W. Hehl
Research Articles

Abstract

From physical arguments space-time is assumed to possess a connection
\(\left\{ {_{ij}^k } \right\}\) is Christoffel's symbol built up from the metric g ij and already appearing in General Relativity (GR). Cartan's torsion tensor\(s_{ij} ^k = \tfrac{1}{2}\left( {\Gamma _{ij}^k - \Gamma _{ji}^k } \right)\) and the contortion tensor K ij k , in contrast to the theory presented here, both vanish identically in conventional GR.

Using the connection introduced above, in this series of articles we will discuss the consequences for GR in the framework of a consistent formalism. There emerges a theory describing in a unified way gravitation and a very weakspin-spin contact interaction.

In Part I of this work† we discussed the foundations of the theory.

In this Part II we present in section 3 the geometrical apparatus necessary for the formulation of the theory. In section 4 we take the curvature scalar (or rather its density) as Lagrangian density of the field. In this way we obtain in subsection 4.1 the field equations in their explicit form. In particular it turns out that torsion is essentially proportional to spin. We then derive the angular momentum and the energy-momentum theorems (subsections 4.2-4); the latter yields a force proportional to curvature, acting on any matter with spin. In subsection 4.5 we compare the theory so far developed with GR. Torsion leads to a universal spin-spin contact

Keywords

Field Equation Curvature Tensor Lagrangian Density Spinor Field Einstein Tensor 

References

  1. 76.
    Edelen, D.G.B. (1962).The Structure of Field Space, (University of California Press, Berkeley).Google Scholar
  2. 77.
    Hayashi, K. and Bregman, A. (1973).Ann. Phys. (N.Y.),75, 562.CrossRefADSGoogle Scholar
  3. 78.
    Iri, M. (1969).R.A.A.G. Res. Notes (Tokyo), Ser. 3,129, 1.Google Scholar
  4. 79.
    Kröner, E. (1963).Ann. Phys. (Leipzig), Ser. 7,11, 13.MATHGoogle Scholar
  5. 80.
    Stojanovitch, R. (1963).Int. J. Eng. Sci.,1, 323.MathSciNetCrossRefGoogle Scholar
  6. 81.
    Stojanovitch, R. and Vujoshevitch, L. (1962).Publ. Inst. Math. (Beograd),2(16), 71.MathSciNetGoogle Scholar
  7. 82.
    Stueckelberg, E.C.G. (1948).Phys. Rev.,73, 808.CrossRefADSGoogle Scholar
  8. 83.
    Ivanenko, D. (1972).Acta Phys. Hung.,32, 341.CrossRefGoogle Scholar
  9. 84.
    Hehl, F.W., von der Heyde, P. and Kerlick, G.D. (1974).Phys. Rev., D, (in press).Google Scholar
  10. 85.
    Hehl, F.W. (1974).On the Energy Tensor of Spinning Massive Matter in Classical Field Theory and General Relativity, (preprint), (Princeton University).Google Scholar
  11. 32a.
    Hehl, F.W. and Datta, B.K. (1971).J. Math. Phys.,12, 1334. Hehl, F. and Kröner, E. (1965).Z. Naturforsch.,20a, 236.MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Company Limited 1974

Authors and Affiliations

  • F. W. Hehl
    • 1
  1. 1.Institut für Theoretische Physik der Technischen UniversitätClausthal-ZellerfeldW. Germany

Personalised recommendations